scholarly journals A study of antimicrobial activity of polyphenols derived from wood

Author(s):  
A. B. Shevelev ◽  
E. P. Isakova ◽  
E. V. Trubnikova ◽  
N. La Porta ◽  
S. Martens ◽  
...  

Due to the spreading and increasing drug resistance of pathogens, the search for novel antibiotics is becoming ever more important. Plant-derived polyphenols are a vast and promising class of compounds with a potential to fight infectious diseases. Still, they are not routinely used in clinical practice. No reports on the in vivo studies of these compounds have been presented. The aim of our work was to compare the antimicrobial activity of resveratrol (stilbene), dihydroquercetin and dihydromyricetin (flavonols) extracted from the bark and wood of conifers against the dermatophytes Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Using the radial diffusion assay, we established that dihydroquercetin, resveratrol and dihydromyricetin exhibit high activity against S. aureus even at the smallest possible concentrations of 0.22, 0.15, and 0.15 mM, respectively. In contrast, the highest achievable concentrations of these compounds in the solutions (21.5, 15.5 and 15.0 mM for dihydroquercetin, resveratrol and dihydromyricetin, respectively) have no effect on the growth of P. aeruginosa and C. albicans. These findings suggest that polyphenols derived from conifers could have a potential to be used as a medicine for topical application to treat bacterial infections of the skin caused by S. aureus.

2019 ◽  
Vol 85 (9) ◽  
Author(s):  
A. Jochim ◽  
T. Shi ◽  
D. Belikova ◽  
S. Schwarz ◽  
A. Peschel ◽  
...  

ABSTRACTMultidrug-resistant bacterial pathogens are becoming increasingly prevalent, and novel strategies to treat bacterial infections caused by these organisms are desperately needed. Bacterial central metabolism is crucial for catabolic processes and provides precursors for anabolic pathways, such as the biosynthesis of essential biomolecules like amino acids or vitamins. However, most essential pathways are not regarded as good targets for antibiotic therapy since their products might be acquired from the environment. This issue raises doubts about the essentiality of such targets during infection. A putative target in bacterial anabolism is the methionine biosynthesis pathway. In contrast to humans, almost all bacteria carry methionine biosynthesis pathways which have often been suggested as putative targets for novel anti-infectives. While the growth of methionine auxotrophic strains can be stimulated by exogenous methionine, the extracellular concentrations required by most bacterial species are unknown. Furthermore, several phenotypic characteristics of methionine auxotrophs are only partly reversed by exogenous methionine. We investigated methionine auxotrophic mutants ofStaphylococcus aureus,Pseudomonas aeruginosa, andEscherichia coli(all differing in methionine biosynthesis enzymes) and found that each needed concentrations of exogenous methionine far exceeding that reported for human serum (∼30 µM). Accordingly, these methionine auxotrophs showed a reduced ability to proliferate in human serum. Additionally,S. aureusandP. aeruginosamethionine auxotrophs were significantly impaired in their ability to form and maintain biofilms. Altogether, our data show intrinsic defects of methionine auxotrophs. This result suggests that the pathway should be considered for further studies validating the therapeutic potential of inhibitors.IMPORTANCENew antibiotics that attack novel targets are needed to circumvent widespread resistance to conventional drugs. Bacterial anabolic pathways, such as the enzymes for biosynthesis of the essential amino acid methionine, have been proposed as potential targets. However, the eligibility of enzymes in these pathways as drug targets is unclear because metabolites might be acquired from the environment to overcome inhibition. We investigated the nutritional needs of methionine auxotrophs of the pathogensStaphylococcus aureus,Pseudomonas aeruginosa, andEscherichia coli. We found that each auxotrophic strain retained a growth disadvantage at methionine concentrations mimicking those availablein vivoand showed that biofilm biomass was strongly influenced by endogenous methionine biosynthesis. Our experiments suggest that inhibition of the methionine biosynthesis pathway has deleterious effects even in the presence of external methionine. Therefore, additional efforts to validate the effects of methionine biosynthesis inhibitorsin vivoare warranted.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Roghaye Keykhasalar ◽  
Masoud Homayouni Tabrizi ◽  
Pouran Ardalan

Background: Linum usitatissimum Seed Essential Oil (LSEO) as an efficient antimicrobial compound contains various types of phytochemicals, such as lignans and phenols. Objectives: In the current study, we produced LSEO nanoemulsion (LSEO-NE) to study its antioxidant capacity and bactericidal activity against Staphylococcus aureus. Methods: The LSEO-NE was produced using the ultrasonication method and characterized by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM). Then, we measured its antioxidant activity utilizing both ABTS and DPPH tests at four different LSEO-NE concentrations (200, 600, 800, and 1000 µg/mL) compared to glutathione. Finally, we evaluated its bactericidal activity on S. aureus by studying Antibiotic Susceptibility Testing (AST) using LSEO-NE-smeared discs compared to non-smeared and kanamycin discs. Results: The 67.3 nm droplets of LSEO-NE with PDI of 0.452 exhibited strong antioxidant activity, similar to glutathione, in both ABTS (IC50 = 350 µg/mL) and DPPH (IC50 = 235 µg/mL) tests. Moreover, the AST results revealed the significant sensitivity of S. aureus to LSEO-NE-smeared discs when compared to non-smeared and kanamycin discs. Conclusions: According to the results, LSEO-NE can be applied as a safe, natural, and effective antibiotic for bacterial infections caused by S. aureus in most organs, such as the respiratory system and skin. However, further in vivo studies are required to evaluate the LSEO-NE antibacterial efficiency against other pathogenic S. aureus strains.


Dose-Response ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 155932582090485 ◽  
Author(s):  
Syed Ali Raza Naqvi ◽  
Syed Muhammad Ali Shah ◽  
Laiba Kanwal ◽  
Muhammad Saeed ◽  
Atta-ul-Haq ◽  
...  

Multidrug resistance has increased globally in the communities. Bacterial infections associated with health care have weakened the existing antimicrobial therapy and demand the search for alternative therapies. In the present investigation, the medicinal plant Pulicaria gnaphalodes from Quetta, Pakistan, has been screened for antimicrobial potential. In vitro antimicrobial efficacy of P gnaphalodes extracts (methanol and ethanol) was quantitatively evaluated on the basis of zone of inhibition against different bacteria and minimum inhibitory concentration (MIC). In vivo, antihypercholesterolemic activity is determined in different rat groups. The results of the study indicated that the ethanol extract of P gnaphalodes showed maximum zone of inhibition for Bacillus subtilis of 12.1 ± 1.1 mm from all others. The methanol extract showed maximum zone of inhibition for Staphylococcus aureus of 11.9 ± 1.0 mm and rifampicin showed maximum zone of inhibition of 23.1 ± 0.9 mm. The results of ethanol and methanol extract of P gnaphalodes against different bacteria revealed that this plant has greater antimicrobial activity. However, the plant extract shows nonsignificant antihypercholesterolemic activity. The extract of this plant can be utilized as medicine to inhibit several infections caused by some bacterial pathogens found in human body.


1986 ◽  
Vol 32 (9) ◽  
pp. 751-755 ◽  
Author(s):  
M. C. Barc ◽  
P. Bourlioux ◽  
H. Boureau ◽  
F. Nerbone ◽  
E. Wasconcellos da Costa

Bacterial colonizaion of the digestive tract and the skin was studied over a 3-week period in a group of 10 germfree HRS mice using Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. Sequential utilization of two strains allowed us to carry out six assays and to show the presence of interference phenomena during colonization of the skin. When P. aeruginosa was given after challenge with S. aureus or S. epidermidis, it did not colonize the skin. If the first challenge was done with P. aeruginosa, this bacteria was eliminated within 10 days by S. aureus and S. epidermidis on the skin, but it succeeded in colonizing the digestive tract. When the first challenge was done with S. aureus, colonization of the skin and the digestive tract with S. epidermidis was prevented, whereas these two species were found in association when S. aureus was given in second place. None of the in vitro assays (mixed culture, bacteriocin production, adherence inhibition, antimicrobial activity) could explain the in vivo observations.


2021 ◽  
Vol 22 (6) ◽  
pp. 2876
Author(s):  
Víctor Vinuesa ◽  
Michael J. McConnell

Iron is essential for multiple bacterial processes and is thus required for host colonization and infection. The antimicrobial activity of multiple iron chelators and gallium-based therapies against different bacterial species has been characterized in preclinical studies. In this review, we provide a synthesis of studies characterizing the antimicrobial activity of the major classes of iron chelators (hydroxamates, aminocarboxylates and hydroxypyridinones) and gallium compounds. Special emphasis is placed on recent in-vitro and in-vivo studies with the novel iron chelator DIBI. Limitations associated with iron chelation and gallium-based therapies are presented, with emphasis on limitations of preclinical models, lack of understanding regarding mechanisms of action, and potential host toxicity. Collectively, these studies demonstrate potential for iron chelators and gallium to be used as antimicrobial agents, particularly in combination with existing antibiotics. Additional studies are needed in order to characterize the activity of these compounds under physiologic conditions and address potential limitations associated with their clinical use as antimicrobial agents.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Hussein A Kadhum ◽  
Thualfakar H Hasan2

The study involved the selection of two isolates from Bacillus subtilis to investigate their inhibitory activity against some bacterial pathogens. B sub-bacteria were found to have a broad spectrum against test bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. They were about 23-30 mm and less against Klebsiella sp. The sensitivity of some antibodies was tested on the test samples. The results showed that the inhibitory ability of bacterial growth in the test samples using B. subtilis extract was more effective than the antibiotics used.


2020 ◽  
Vol 2 (2) ◽  
pp. 69-76
Author(s):  
Dini Aulia Azmi ◽  
Nurlailah Nurlailah ◽  
Ratih Dewi Dwiyanti

Streptococcus pyogenes and Pseudomonas aeruginosa are some of the causes of infectious diseases. Centella asiatica (L.) Urban has many benefits for humans, including overcoming fever, anti-bacterial, and anti-inflammatory. This study aims to determine the inhibition of Centella asiatica (L.) Urban leaves ethanol extract on the growth of Streptococcus pyogenes and Pseudomonas aeruginosa. This research is the initial stage of the development of herbal medicines to treat Streptococcus pyogenes and Pseudomonas aeruginosa infections. The independent variable was the concentration of ethanol extract of Centella asiatica (L.) Urban leaves and the dependent variable was the growth of Streptococcus pyogenes and Pseudomonas aeruginosa. The anti-bacterial activity test was carried out by the liquid dilution method. The concentrations used are 20%, 40%, 60%, 80%. 100% The results showed that the minimum inhibitory concentration (MIC) against Streptococcus pyogenes: 40% and Pseudomonas aeruginosa: 40%. Minimum bactericidal concentration (MBC) results for Streptococcus pyogenes: 60% and Pseudomonas aeruginosa: 60%. So it can be concluded that there is inhibition of the ethanol extract of Centella asiatica (L.) Urban leaves on the growth of Streptococcus pyogenes and Pseudomonas aeruginosa. Centella Asiatica (L.) Urban extract has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


2020 ◽  
Vol 2 (2) ◽  
pp. 61-68
Author(s):  
Agnina Listya Anggraini ◽  
Ratih Dewi Dwiyanti ◽  
Anny Thuraidah

Infection is a disease caused by the presence of pathogenic microbes, including Staphylococcus aureus and Escherichia coli. Garlic (Allium sativum L.) has chemical contents such as allicin, alkaloids, flavonoids, saponins, tannins, and steroids, which can function as an antibacterial against Staphylococcus aureus and Escherichia coli. This study aims to determine the antibacterial properties of garlic extract powder against Staphylococcus aureus and Escherichia coli. This research is the initial stage of the development of herbal medicines to treat Staphylococcus aureus and Escherichia coli infections. The antibacterial activity test was carried out by the liquid dilution method. The concentrations used were 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL and 70 mg/mL. The results showed that the Minimum Inhibitory Concentration (MIC) against Staphylococcus aureus and Escherichia coli was 40 mg/mL and 50 mg / mL. Minimum Bactericidal Concentration (MBC) results for Staphylococcus aureus and Escherichia coli are 50 mg/mL and 70 mg/mL. Based on the Simple Linear Regression test, the R2 value of Staphylococcus aureus and Escherichia coli is 0.545 and 0.785, so it can be concluded that there is an effect of garlic extract powder on the growth of Staphylococcus aureus and Escherichia coli by 54.5% and 78.5%. Garlic (Allium sativum L.) extract powder has potential as herbal medicine against bacterial infections but requires further research to determine its effect in vivo.


2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610
Author(s):  
Madalina Mihalache ◽  
Cornelia Guran ◽  
Aurelia Meghea ◽  
Vasile Bercu ◽  
Ludmila Motelica ◽  
...  

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: [Cu(TB)(HA)]Cl (C1), [Cu(TB)(HA)CH3COO]�H2O (C2) and [Cu(TB)(HA)](NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document