scholarly journals Utilization of Glycerol from Used Oil as an Ester Glycerol Surfactant

Author(s):  
Dian Wardana ◽  
Ahmad Ramadhan ◽  
Dinda Prihatini Fitri Amne ◽  
Eddiyanto Eddiyanto

The development of biodiesel which is currently increasing has helped increase glycerol as a by-product. The glycerol can be obtained from a transesterification reaction in either vegetable or animal oils or fats and even used cooking oil. Glycerol buildup without further processing can reduce the selling price of glycerol. One solution to overcome this is to convert it to surfactants such as glycerol esters which are widely used in various industries such as chemistry, food, cosmetics, medicine and textiles. This study aims to utilize used cooking oil as a source of glycerol used in the synthesis of glycerol ester surfactants, as well as to compare the quality of glycerol ester surfactants produced by the use of commercial glycerol. The process begins by isolating glycerol from used cooking oil and then purifying it to improve its quality. Then glycerol ester was synthesized by using stearic acid, palmitic acid and oleic acid at reaction times of 120, 150 and 180 minutes. The highest yield of ester glycerol produced was at the reaction time of 180 minutes for each use of fatty acids. The test results showed that the glycerol ester produced was able to reduce the surface tension of the water. The value of hydrophylic-lipophylic balance (HLB) is not much different in the range of 5, and the use of various fatty acids and different sources of glycerol results in % of the stability of different emulsions.

2018 ◽  
pp. 189-193
Author(s):  
P Purwati ◽  
Tri Harningsih

ABSTRAK Minyak digunakan secara berulangkali mengakibatkan penurunan kualitas minyak. Salah satunya adalah peningkatan asam lemak bebasnya. Limbah ampas tebu yang diubah ke dalam bentuk arang digunakan menurunkan asam lemak bebas pada minyak goreng bekas. Penambahan arang ampas tebu dengan variasi massa dapat menurunkan asam lemak bebas. Asam lemak bebas minyak bekas sebelum ditambah dengan arang ampas tebu adalah 0,62 %. Angka tersebut mengalami penurunan setelah penambahan variasi massa ampas tebu dimulai dengan 2,5 gram; 5,0 gram; 7,5 gram; 10,0 gram dan 12,5 gram. Hasil asam lemak bebas berturut-turut 0,61%; 0,55%; 0,48%; 0,45%; 0,43%. Kondisi optimum dari massa arang ampas tebu sebesar 12,5 gram. Prosentase penurunan asam lemak bebas sebesar 30,41 % dengan kadar asam lemak bebas dari sebelum dilakukan adsorbsi sebanyak 0,61% menjadi 0,43%.   Kata kunci: arang ampas tebu, asam lemak bebas, minyak goreng bekas       ABSTRACT Oils used repeatedly will result in a decrease in the quality of oil. One of which is the increase in free fatty acids. The waste bagasse which is converted into charcoal form used to lower free fatty acid in used oil casting. The addition of charcoal of bagasse with variation of mass can decrease free fatty acid. The fatty acid free of used oil before it is added with sugarcane bagasse is 0,62%. The number decreases after the addition of variation of bagasse mass begins with 2,5 grams; 5,0 grams; 7,5 grams; 10,0 grams and 12; 5 grams. Free fatty acids result are 0,61%; 0,55%; 0,48%; 0,45%; 0; 43% respectively. The optimum condition from the mass of charcoal of bagasse is 12,5 grams. Percentage of free fatty acid decrease of 30,41% with free fatty acid content from before adsorbs 0,61% to 0,43%.   Keywords: charcoal of bagasse, free fatty acids, used cooking oil


2017 ◽  
Vol 3 (1) ◽  
pp. 35-43
Author(s):  
Isalmi Aziz ◽  
Nur Hijjah Bayani Fadhilah ◽  
Hendrawati Hendrawati

Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation) process so that the adsorption of colloidal-sized compound impurities which can be separated from the glycerol. The purpose of this research is determine optimal condition of adsorption and coagulation impurity compounds of crude glycerol by using H-zeolite and  alum and  also determine quality of glycerol  was obtained. First, crude glycerol acidified by phosphoric acid 85% (pure analysis) until desired pH ±2.5. It was obtained purity of glycerol 72.797%. The next process is adsorption with activated H-zeolite and it obtained purity of glycerol 77.079%. The last process in this research is adsorption and coagulation by using H-zeolite and alum. The highest purity glycerol 93.803% was obtained from condition of adsorption and coagulation for 75 minutes; alum’s concentration 80 ppm; and temperature 60 ºC. The glycerol discharged from adsorption and coagulation process by using H-zeolite and alum is qualify Indonesia National Standard number 06-1564-1995 with 3.512% water content; 2.438% ash content; 0.247% MONG content; has no sugar; 1.259 g/mL density of glycerol; 0.2356% potassium content and 0.0410% aluminium content; and brighter color.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5143


2018 ◽  
Vol 7 (1) ◽  
pp. 41
Author(s):  
Muhammad Silmi Hi Abubakar ◽  
Siti Nuryanti ◽  
Suherman Suherman

Study on the purification and quality test of used cooking oil with turmeric has been done. This study aims to determine the quality of cooking oil after purified turmeric. The quality parameters of oil studied were the moisture content, free fatty acids (FFA), and peroxide. The methods used for determination of these parameters were gravimetry for moisture content, acid-base titration for free fatty acids, and iodometric for peroxide. The test results for water from 0.6% to 0.4% free fatty acid from 1.2% to 0.2%, and peroxide levels before and after purification were successively from and 6 meq/g to 4 meq/g, respectively. Only free fatty acids of all three parameters met the requirement of SNI.


Author(s):  
Ihwan Ihwan ◽  
Fadlia Fadlia ◽  
Syariful Anam

Quality of used cooking oil with snake fruit (Salacca zalacca (Gaertn.) Voss) seed adsorbent  has been conducted. This study aims to determine the ability of snake fruit seed in reducing peroxide value and free fatty acids in used cooking oil which can improve the quality and extend usage lifespan of the used cooking oil. The oil sampled in this study was packaged cooking oil which is usually used to fry food untill 7th frying. The oil was then neutralized using snake fruit activated charcoal. The test refers to the Indonesian National Standard (SNI) 7709: 2012 as the quality requirements of cooking oil. The results showed that snake fruit activated charcoal can reduce peroxide value as much as 56.18% and free fatty acid 76.04% in the used cooking oil.


Author(s):  
Ihwan Ihwan ◽  
Fadlia Fadlia ◽  
Syariful Anam

Quality of used cooking oil with snake fruit (Salacca zalacca (Gaertn.) Voss) seed adsorbent  has been conducted. This study aims to determine the ability of snake fruit seed in reducing peroxide value and free fatty acids in used cooking oil which can improve the quality and extend usage lifespan of the used cooking oil. The oil sampled in this study was packaged cooking oil which is usually used to fry food untill 7th frying. The oil was then neutralized using snake fruit activated charcoal. The test refers to the Indonesian National Standard (SNI) 7709: 2012 as the quality requirements of cooking oil. The results showed that snake fruit activated charcoal can reduce peroxide value as much as 56.18% and free fatty acid 76.04% in the used cooking oil.


Author(s):  
Aprialis Aprialis ◽  
Anwar Kasim ◽  
Rini Rini

The characteristics of used frying oil that are carried out repeatedly using high temperatures and with various types of frying materials will produce new types of oil characteristics, either the appearance and disappearance of certain types of chemical components or changes in the physical properties of frying oil. This study aims to determine the characteristics of cooking oil used in frying peanuts which have high fat content, high carbohydrate content of cassava and mackarel tuna which have high protein content. Samples of used oil were obtained from the use of pure oil from palm oil and then the 3 different types of material were fried with 10 frying repetitions. The used frying oil was then visually observed and analyzed for the number of peroxides, free fatty acids, and moisture content, color test, amount of oil lost and its fatty acid profile. In addition, the amount of oil lost due to frying was observed. The results of the observation of physical properties showed that the smell of oil became rancid, the taste of the oil became bitter and the color turned black. The results of chemical analysis showed that the highest peroxide number was 50 meq / kg, the highest ALB was 4.35%, and the highest moisture content was 3.21% , the oil color changed to brown to black, the highest amount of oil lost due to frying was cassava frying oil. namely 58.4% , . The fatty acid profile of used frying oil has been obtained and there is a decrease in the percentage, the appearance of stearic acid and the loss of heptadecanoic fatty acids in the used cooking oil for peanuts, cassava and mackarel tuna.


2017 ◽  
Vol 901 ◽  
pp. 135-141 ◽  
Author(s):  
Yehezkiel Steven Kurniawan ◽  
Muslih Anwar ◽  
Tutik Dwi Wahyuningsih

A new ketal cyclic from ethyl 9,10-dihydroxyoctadecanoate with acetone had been synthesized by reflux and sonochemical method. The synthesis was performed via several steps of reaction, i.e.: transesterification, hydrolysis, oxidation with 1% KMnO4 in basic condition, esterification, and ketalization. The structures of the products were confirmed by FTIR, GC-MS, 1H- and 13C-NMR spectrometers. Direct transesterification of used cooking oil produced a mixture of ethyl ester in 82.94% yield meanwhile hydrolysis of this mixture gave free fatty acids mixture in 88.46% yield. Hydroxylation reaction of free fatty acids mixture yielded a white powder of 9,10-dihydroxyoctadecanoic acid in 46.52% yield. Esterification of 9,10-dihydroxyoctadecanoic acid and ethanol catalyzed by sulfuric acid with reflux condition for 4 hours and sonochemical method, respectively yielded 90% and 93.8% of ethyl 9,10-dihydroxystearate. In the other side, the utilization of KSF montmorillonite as catalyst conducted with reflux gave 52% in yield of ester. Furthermore, the use of acetone in 45 minutes sonochemical method with montmorillonite KSF catalyst gave cyclic ketal (ethyl 8-(2,2-dimethyl-5-octyl-1,3-dioxolan-4-yl)octanoate) as a yellow viscous liquid in 53.30% yield. From physicochemical properties –density, kinematic viscosity, viscosity index, total acid number, total base number and iodine value- gave the conclusion that this novel compound is potential biolubricant candidates to be developed.


2014 ◽  
Vol 584-586 ◽  
pp. 1750-1755
Author(s):  
Xiao Lei Chang ◽  
Song Gu ◽  
Zhi Zheng

Compared with natural aggregate, recycled aggregate apparent density, bulk density, porosity, water absorption, large crushing index value, which corresponds to aggregate different sources have different indicators, which largely of recycled concrete limits on the application.. In order to more efficiently improve the utilization of recycled aggregate, ensure the stability production quality of recycled concrete, source unknown and difficult to directly measure its intensity of waste concrete materials, at the time of the preparation of recycled aggregate, it is recommended to repeat loading, using different pressures from different standard strength of recycled concrete coarse aggregate crushed curve to use as a criterion to determine the source of their overall strength. Different in different sources of strength recycled aggregate crushing value mainly reflected on the bond strength.


1970 ◽  
pp. 87-94
Author(s):  
Samsuar Samsuar

Cooking oil is one of the foods that are needed by the community in daily life. The use of cooking oil continuously at high temperatures, produces cooking oil that is no longer feasible to use. Therefore, it’s necessary to purify used cooking oil so that it can be reused for non-foood purposes such as making soap or biodiesel fuel. This purification process is utilie the activated carbon of reeds (Imperata cylindrica L. Raeusch) as an adsorbent to reduce the levels of free fatty acids and colors in used cooking oil. Free fatty acid content test using acid base titration method and color change using Uv-Vis spectrofotometry method. This study aims to determine the optimum concentration of reeds activated carbon as an adsorbent in reducing the levels of free fatty acids and colors in used cooking oil, which consists of the concentration of reeds activated carbon which is a consentration of 2,5; 5; 7,5; 10; dan 12,5%. The results of variance analysis showed the optimum concentration of reeds activated carbon to reduce the levels of free fatty acids and colors absorbance in used cooking oil at a concentration of 7,5%. The percentage of decreasing levels of free fatty acids gorengan and pecel lele are 78.57% and 78.85%. Decrease in absorbance of gorengan color from 1,792% to 0,384% and the pecel lele color absorbance from 2,521 to 0,515. Keywords : Activated Carbon,Color, Free Fatty Acid, Reeds, and Used Cooking Oil.


Sign in / Sign up

Export Citation Format

Share Document