scholarly journals Electrical features of the engine starting system

2018 ◽  
Vol 19 (6) ◽  
pp. 655-660
Author(s):  
Józef Pszczółkowski

The article describes the electrical properties of the engine starting system, that is the acid battery and the electric starter. The dependencies of battery voltage on independent variables affecting them, i.e. capacity, current, temperature or charge status, are discussed. The principles of operation of the battery and electric starter were described and its characteristics were presented, taking into account the properties of the load in the form of a resisting torque and being a source of battery energy. The possibilities of describing the characteristics of the starting system and determining the electrical parameters of the battery and the starter as components of the circuit, i.e. the electromotive force of the battery, resistance, inductance and capacity, are indicated.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 393
Author(s):  
Huthaifa Obeidat ◽  
Atta Ullah ◽  
Ali AlAbdullah ◽  
Waqas Manan ◽  
Omar Obeidat ◽  
...  

This paper outlines a study of the effect of changing the electrical properties of materials when applied in the Wireless InSite (WI) ray-tracing software. The study was performed at 60 GHz in an indoor propagation environment and supported by Line of Sight (LoS) and Non-LoS measurements data. The study also investigates other factors that may affect the WI sensitivity, including antenna dimensions, antenna pattern, and accuracy of the environment design. In the experiment, single and double reflections from concrete walls and wooden doors are analysed. Experimental results were compared to those obtained from simulation using the WI. It was found that materials selected from the literature should be similar to those of the environment under study in order to have accurate results. WI was found to have an acceptable performance provided certain conditions are met.


Author(s):  
Nurul Huda Osman ◽  
Nurul Najiha Mazu ◽  
Josephine Liew Ying Chyi ◽  
Muhammad Mahyiddin Ramli ◽  
Mohammad Abdull Halim Mohd Abdull Majid ◽  
...  

This paper reports on chitosan/bentonite crosslinked (ChB-ECH) film for removal of Cu (II). The effects of chitosan/bentonite ratio on the removal percentage were studied along with the effect of different Cu (II) concentration and the contact time on the film adsorption capacity, qt. The electrical properties of the film are studied, before and after the adsorption occurred, by using impedance spectroscopy for different parameters such as DC conductivity, the complex dielectric constants (ε’ and ε”) and complex electrical modulas (M’ and M’’). The results showed that the chitosan/bentonite ratio of 3:1 produces highest removal percentage at 29 %, while the contact time of 120 minutes was found to be optimum. An increment in the DC conductivity of the ChB-ECH film’s was observed up to 10-7 S/cm as the removal percentage of film increased. The film with the highest Cu (II) adsorb also showed the highest value for ε’ and ε” while exhibiting non-Derby behavior. Shifting of peak amplitude of the M” towards the higher frequency was also observed as the Cu (II) adsorption in the film increased. The results showed that all the electrical parameters can be utilized to determine the amount of adsorbed copper (II) in chitosan/bentonite film.


1997 ◽  
Vol 500 ◽  
Author(s):  
M. Park ◽  
G. M. Choi

ABSTRACTComposition. dependence of electrical conductivity of ionic-electronic composite was camined using yttria(8mol%) stabilized zirconia-NiO composites. The contributions of ectronic and ionic charge carriers to the electrical conductivity were determined by Hebb-Vagner polarization technique and electromotive force measurement of galvanic cell. Up to 6 sol% NiO addition, the conductivity decreased since the electronic NiO acted as an insulator in onic matrix. However the ionic transport was dominant until NiO content reaches 26 vol%. Mixed conduction was observed between 26 and 68 vol% of NiO. The effects of composition on he electrical properties were explained by the microstructure and thus by the distribution of two hases.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7212
Author(s):  
Józef Pszczółkowski

In this paper, the operating principles of the acid battery and its features are discussed. The results of voltage tests containing the measurements conducted at the terminals of a loaded battery under constant load conditions, and dependent on time, are presented. The article depicts the principles of the development of electric models of acid batteries and their various descriptions. The principles for processing the results for the purpose of the determination and description of the battery model are characterized. The characteristics under stationary and non-stationary conditions are specified using glued functions and linear combinations of exponential functions, and the electrical parameters of the battery are determined as the components of the circuit, i.e., its electromotive force, resistance, and capacity. The dynamic characteristic of the battery in the form of transmittance was determined, using the Laplace transform. Possible uses of the crankshaft driving signals as diagnostic signals of the battery, electric starter, and internal combustion engine are also indicated.


2012 ◽  
Vol 717-720 ◽  
pp. 825-828
Author(s):  
Alessia Frazzetto ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
R. Lo Nigro ◽  
M. Saggio ◽  
...  

This paper reports on the effects of different post-implantation annealings on the electrical properties of interfaces to p-type implanted 4H-SiC. The morphology of p-type implanted 4H-SiC was controlled using a capping layer during post-implantation activation annealing of the dopant. Indeed, the surface roughness of Al-implanted regions strongly depends on the use of the protective capping layer during the annealing. However, while the different morphological conditions do not affect the macroscopical electrical properties of the implanted SiC (such as the sheet resistance), they led to an improvement of the morphology and of the specific contact resistance of Ti/Al Ohmic contacts formed on the implanted regions. These electrical and morphologic improvements were associated with a lowering of Schottky barrier height. Preliminary results showed that the different activation annealing conditions of p-type implanted SiC can affect also the electrical parameters (like threshold voltage and mobility) of lateral MOSFETs.


RSC Advances ◽  
2014 ◽  
Vol 4 (35) ◽  
pp. 18178-18185 ◽  
Author(s):  
Debanjan Das ◽  
Farhan Ahmad Kamil ◽  
Karabi Biswas ◽  
Soumen Das

The present study introduces a simple and detailed analysis technique to extract the electrical properties of a single cell from impedance spectroscopy data from a group of cells in suspension, leading to a more reliable and cost effective diagnosis process for disease detection.


2018 ◽  
Vol 32 (32) ◽  
pp. 1850358 ◽  
Author(s):  
Sweety Supriya ◽  
Sunil Kumar ◽  
Lagen Kumar Pradhan ◽  
Rabichandra Pandey ◽  
Manoranjan Kar

Electrical properties of a series of nanocrystalline aluminium-substituted cobalt ferrite CoAl[Formula: see text]Fe[Formula: see text]O4 (CAFO) with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 have been explored. The electrical parameters have been measured by employing impedance and techniques. The impedance has measured as a function of frequency and temperature for all the samples. The impedance increases with the increase in Al concentration in CAFO. Cobalt ferrite is yet to be verified as a ferroelectric material. However, the electrical properties reported here are similar to conventional ferroelectric materials. Multiple (two) electrical phase transitions have been observed, the two transition temperatures are identified as T[Formula: see text] and T[Formula: see text] i.e., one is dipole relaxation transition (T[Formula: see text]) and other one is electrical phase transition temperature. Both AC and DC measurements indicate the transition temperatures.


2021 ◽  
Vol 105 (1) ◽  
pp. 461-466
Author(s):  
Helena Polsterova

Nanocomposites are subject of research in many fields of science. Electrical technology focused on the study of electrical properties of nanocomposites including breakdown strength, relative permittivity, resistivity and other. This paper describes the results of measurement of electrical parameters of a nanocomposite at various temperatures. The nanocomposite matrix was casting epoxy resin and nanoparticles were made of TiO2 powder at different concentrations.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 366 ◽  
Author(s):  
Małgorzata Musztyfaga-Staszuk ◽  
Damian Janicki ◽  
Piotr Panek

This work presents comparison results of the selected electrical parameters of silicon solar cells manufactured with silver front electrodes which were co-fired in an infrared belt furnace in the temperature range of 840–960 °C. The commercial paste (PV19B) was used for the metallization process. Electrical properties of a batch of solar cells fabricated in one cycle were investigated. Three methods were used, including measurement of the current-voltage characteristics (I-V), measurement of contacts’ resistivity using the transmission Line model method (TLM), and measurement of contacts’ resistivity using the potential difference method (PD). This work is focused on both the different metallization temperatures of co-firing of solar cells and measurements using the above-mentioned methods. It is shown that the solar cell parameters measured with three methods have different, but strongly correlated values. Moreover, the comparative analysis was performed of the investigations of the same photovoltaic solar cells using both the TLM method and independent research stands (including one non-commercial and two commercial ones) at three different scientific units. In the PD and TLM methods, the same calculation formulae are used. It can be stated, comparing methods I-V, PD, and TLM, that for each, different parameters are determined to assess the electrical properties of the solar cell.


1969 ◽  
Vol 53 (4) ◽  
pp. 427-449 ◽  
Author(s):  
Barry D. Lindley

The suitability of frog skin glands as a model for the study of secretory mechanisms in exocrine glands was explored. Periodic voltage clamp was used to determine continually the short-circuit current, chord conductance, and electromotive force of frog skin during neural and pharmacological activation of the skin glands. Both the chord conductance and the short-circuit current increased with glandular activation; the temporal dissociation of these increases suggests that there are at least two separate components to the secretory response. The sensitivity of the secretory electrical changes to changes in the ionic composition of the bathing solutions supports the notion of electrogenic chloride active transport as being basic to the activity of the exocrine glands.


Sign in / Sign up

Export Citation Format

Share Document