scholarly journals Effect of Current Density on Crystallographic Orientation, and Oxidation Behavior of Copper Plated on Aluminum Substrate

2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Bambang Soegijono ◽  
Ferry Budhi Susetyo ◽  
Evi U. M. Situmorang ◽  
Yusmaniar

In this work, the electroplating of copper on an aluminum substrate without electrochemical surface treatment was investigated. Electroplating of copper on aluminum substrate was prepared from copper sulfate electrolyte bath with various current densities 1 mA/cm², 3 mA/cm², 10 mA/cm², and 40 mA/cm². The effects of current density on the samples properties were characterized using a different technique. The surface morphology, crystallographic orientation, and corrosion resistance of the Copper film were analyzed using a scanning electron microscope, energy dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD), and potentiostat. The samples' surface morphology is changed with different current densities because nucleation is driven by transferring the copper ion rate onto the aluminum substrate. The Cu-10 sample exhibits (111) peak higher and the best corrosion resistance than other samples. Moreover, Cu-1 samples have shifted to positive corrosion voltage (Ecorr) than the other samples.

2005 ◽  
Vol 495-497 ◽  
pp. 1413-1418 ◽  
Author(s):  
Shixue Wen ◽  
Jerzy A. Szpunar

The influence of current density and temperature on the macrotexture, the orientation and size of grains, and the corrosion resistance of tin deposits was studied. Tin coatings with two different textures, (100) and (301) fiber textures were produced by electrodeposition at 20°C by varying current density. At a lower current density of 100A/m2, (301) fibre was obtained. At the current densities of 100 and up to 400 A/m2, only (100) fibre texture was observed. An increase in current density leads to a decrease in grain size. At the same current density, the grain size of tin coatings increases with increased temperature. The influence of temperature (20, 40, 60 and 80 °C) on texture is relatively negligible. The corrosion resistance of tin coatings increases with a decrease in grain size. The corrosion resistance of tin coating with (301) fibre is higher than that of tin coating with (100) fibre texture. The results suggest that texture and microstructure play an important role in controlling corrosion rate of tin based coatings.


2007 ◽  
Vol 546-549 ◽  
pp. 661-666 ◽  
Author(s):  
Chun Lin He ◽  
Qing Kui Cai

The effects of current densities on the morphology and corrosion resistance of anodized coating formed on a SiCp/2024 Al metal matrix composite (MMC) in sulfuric acid solution were investigated by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and polarization curve. The results showed that the surface of the coating was not flat, and cracks existed when the current density increased to 20mA/cm2. The SiC particles could be oxidized during anodizing of the MMC. And the SiC particle anodized at a significantly reduced rate compared with the adjacent Al matrix. This gave rise to alumina film encroachment beneath the particle and occlusion of the partly anodized particle in the coating. As a consequence, the oxide/substrate interface became locally scalloped, and the anodized coating was non-uniform in thickness. Further, oxidation of SiC appeared to be associated with gas-filled cavities in the coating material. The size of cavities above the SiC particles increased obviously and the surface cracks developed when the current density increased. This shows that the anodized coating formed at higher current density has a structural feature with lower corrosion resistance. The polarization results indicated that the corrosion resistance of the coating decreases when the current density increases.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 795
Author(s):  
Jingjing Xiao ◽  
Jinku Yu ◽  
Fuyu Guo ◽  
Qi Qiao ◽  
Haibo Yang ◽  
...  

Herein, NiCrP amorphous alloy coatings were prepared on copper substrates by electrodeposition. The aim of this paper is to replace Cr6+ with Cr3+ to prepare NiCrP amorphous alloy coating, which can reduce environmental pollution. By studying the influence of pH, temperature (T), current density (DK), and CrCl3 concentration on the structure, surface morphology, composition, and corrosion resistance of the alloy coatings, the optimum bath formulation and process parameters were determined as follows: 25 g·L−1 NiSO4·6H2O, 100 g·L−1 CrCl3·6H2O, 20 g·L−1 NaH2PO2·H2O, 80 g·L−1 Na3C6H5O7·2H2O (sodium citrate), 40 g·L−1 H3BO3, 50 g·L−1 NH4Cl, 1 g·L−1 KF, 5 g·L−1 C7H5O3NS (saccharin), 0.05 g·L−1 C12H25SO4Na (sodium dodecyl sulfate), and 40 mL·L−1 HCOOH and T: 30 °C, DK: 15 A·dm−2, and pH: 3.5, respectively. NiCrP amorphous alloy coatings with high corrosion resistance were prepared under the abovementioned conditions. The crystal cells of the coating surface are uniform and fine. The corrosion resistance of the NiCrP amorphous alloy coatings was characterized by polarization curves, electrochemical impedance spectroscopy, and an immersion corrosion test and compared with that of the NiP amorphous alloy coating. The results show that Ni91.9P8.1 and Ni83.5Cr8.3P8.2 corrosion potential and corrosion current density are −0.68, −0.44 V, and 36, 7 μA·cm−2 in 3.5 wt.% NaCl, respectively. With Ni91.9P8.1 and Ni83.5Cr8.3P8.2, the maximum weight loss is 61.67 and 15.42 mg·dm−2 in a 1 mol·L−1 HCl, respectively. The corrosion resistance of the NiCrP amorphous alloy coatings in 3.5 wt.% NaCl and 1 mol·L−1 HCl solutions is better than that of the NiP alloy coating.


2006 ◽  
Vol 315-316 ◽  
pp. 686-690
Author(s):  
Z.W. Zhu ◽  
Di Zhu

Nickel deposits were electroformed by a novel technique, in which the mandrel rotated in hard particles (such as ceramic beads) filling between the electrodes. The microstructure and microhardness of the deposit were studied by means of SEM, XRD analysis in contrast with the traditional method. The effects of current densities on the surface morphology and microhardness of the deposit were also studied. The results showed that the polishing, impacting and disturbing of hard particles during electrodepositing could affect the microstructure and performance of the deposits. The grains were substantially refined, the preferred orientation of (200) face weakened and the microhardness significantly increased. Moreover, the presented technique could use higher current density and produce bright and smooth deposits.


2021 ◽  
Author(s):  
Mariana Rossi ◽  
Montserrat Vicenta Haro Rodríguez ◽  
Angel Vicente Escuder ◽  
Eber de Santi Gouvêa ◽  
Margarida Juri Saeki ◽  
...  

Abstract The electrical resistance sintering is a fast method to fabricate metallic samples in the field of metallurgy and it was used to obtain the Ti-Nb-Sn alloy to be applied as biomaterial, variyng different electrical current densities (11, 12 and 13 kA). The powders were obtained by mechanical alloying, then they were compacted at pressure of 193 MPa during 700 ms. The structure and microstructure of the powders and the samples was evaluated by x-ray diffraction, by Field Emission Scanning Electron Microscopy and electron back-scattered diffraction. The mechanical properties were evaluated by microhardness assay and corrosion resistance was made in Ringer Hartmann’s solution at 37ºC. The samples are formed by α, α” and phase β. The % of phase β in the samples obtained at 11, 12 and 13 kA was 96.56, 98.12 and 98.02 respectively. The peripheral zone present more presence of microporosity than the central zone. The microstructure is also formed by bcc-β grains equiaxial, and the samples obtained at 12 kA present better homogeneity of the microstructure. The grain size increased with the increase of the electrical current density. The microhardness are in the range of 389-418 HV and decreased with the increase of electrical current density. Corrosion tests proved excellent corrosion resistance of the alloys (0.24-0.45 µA/cm2). The standard deviation of kinetic parameters of the samples at 11 and 13 kA were very higher, related to the lack of homogeneity of the microstructure.


2015 ◽  
Vol 227 ◽  
pp. 19-22 ◽  
Author(s):  
Zbigniew Szklarz ◽  
Halina Krawiec ◽  
Mirosław Wróbel

In this paper, the influence of the crystallographic orientation of grains on the corrosion behaviour of pure aluminium is investigated combining the Electrochemical Microcell and the X-Ray Diffraction (XRD) Techniques. Crystallographic orientation has strong influence on the current density in the cathodic branch and the breakdown potential. The influence of plastic deformation (compression) on the corrosion resistance is also investigated. Compression has nearly no influence on the current density in the cathodic domain, but improves the corrosion resistance of aluminium in sodium chloride solution.


2014 ◽  
Vol 1033-1034 ◽  
pp. 1241-1244
Author(s):  
Yi Xiao ◽  
Qiong Yu Zhou ◽  
Jian Hui Fang ◽  
Qing Dong Zhong

Ni-W alloy coating was electroplated on the surface of mild steel and the effect of current density on its corrosion behavior was evaluated in this paper. The microstructure of the coatings were scanning electron microscopy (SEM) Polarization techniques have been used to investigate the corrosion behavior in 3.5wt.% NaCl. The results showed that the surface morphology of the coatings is strongly influenced by the deposition current density. And the increased of current densities is benefit for the Ni-W coating from0.5 to 4A/dm2, and the critical value of current densities is 4A/dm2, the corrosion resistance of electroplated coating present better worse when current densities exceeds the critical value or more.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


Author(s):  
M. R. McCartney ◽  
J. K. Weiss ◽  
David J. Smith

It is well-known that electron-beam irradiation within the electron microscope can induce a variety of surface reactions. In the particular case of maximally-valent transition-metal oxides (TMO), which are susceptible to electron-stimulated desorption (ESD) of oxygen, it is apparent that the final reduced product depends, amongst other things, upon the ionicity of the original oxide, the energy and current density of the incident electrons, and the residual microscope vacuum. For example, when TMO are irradiated in a high-resolution electron microscope (HREM) at current densities of 5-50 A/cm2, epitaxial layers of the monoxide phase are found. In contrast, when these oxides are exposed to the extreme current density probe of an EM equipped with a field emission gun (FEG), the irradiated area has been reported to develop either holes or regions almost completely depleted of oxygen. ’ In this paper, we describe the responses of three TMO (WO3, V2O5 and TiO2) when irradiated by the focussed probe of a Philips 400ST FEG TEM, also equipped with a Gatan 666 Parallel Electron Energy Loss Spectrometer (P-EELS). The multi-channel analyzer of the spectrometer was modified to take advantage of the extremely rapid acquisition capabilities of the P-EELS to obtain time-resolved spectra of the oxides during the irradiation period. After irradiation, the specimens were immediately removed to a JEM-4000EX HREM for imaging of the damaged regions.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


Sign in / Sign up

Export Citation Format

Share Document