scholarly journals Smart biopolymers from protein wastes used in agriculture

2020 ◽  
Author(s):  
Rodica Roxana Constantinescu ◽  
Gabriel Zainescu ◽  
Iulia Caniola

The area of interest is the synthesis and study of properties of new types of hydrogels made from pelt waste, in order to recover waste from tanneries. The complex aspects related to protein projects in the leather industry are addressed by accurately determining a chemical composition, a skin designer and a different possibility of recovery and claiming a value, the use of biotechnology. The complex aspects related to protein waste in the leather industry are addressed by accurately determining the chemical composition of leather waste and the different possibilities of recovery and recycling using biotechnology. The technologies used in order to obtain a smart hydrogel based on collagen and natural polymers are non-polluting and waste-free. An important aspect to note is that the smart hydrogel is obtained through an almost identical technological process to the one used for medical collagen. An extensive study of the potential for reuse and recycling of leather protein waste in ecological conditions by developing innovative procedures for obtaining an NPK collagen matrix to be used successfully as smart fertilizer for modifying nutrient-poor soils. Hydrogels with collagen structure are characterized by a high-performance instrumental analysis system (FT-IR-ATR, SEM, EDAX, etc.).

2017 ◽  
Vol 68 (2) ◽  
pp. 393-395 ◽  
Author(s):  
Gabriel Zainescu ◽  
Rodica Roxana Constantinescu ◽  
Carmen Sirbu

The area of interest is the synthesis and study of properties of new types of hydrogels made from pelt waste, in order to recover waste from tanneries. Leather processing in tanneries results in about 500-600 kg of pelt waste from a ton of raw hides. These hydrogels are made using smart processes in order to then be applied in agriculture, for preservation of water in the soil or for controlled release of fertilizers, pesticides but also for the development of additivated agricultural film biodegradable over time (between 1 month and 6 months). Hydrogels that are based on biopolymers, compared with hydrogels based on synthetic polymers, have the advantage of biodegradability, biocompatibility, and a low level of toxicity. The paper presents the production of biodegradable polymer mixtures obtained from hydrolysis and enrichment of the resulting hydrolysate with phosphorus and potassium. Hydrogels with collagenous structure are tested using a high-performance instrumental analysis system (FT-IR-ATR, UV-Vis-NIR, SEM, EDAX, etc). The paper presents an experimental model for obtaining hydrogels with collagenous structure from pelt waste resulting from the liming process.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 340
Author(s):  
Kitherian Sahayaraj ◽  
Balakrishnan Saranya ◽  
Samy Sayed ◽  
Loko Yêyinou Laura Estelle ◽  
Koilraj Madasamy

The foam produced by nymphs of Poophilus costalis on eleven different host plants belonging to eight families on St. Xavier’s College campus in India was studied over five months. The chemical composition and antimicrobial activity of these biofoams were investigated. The results revealed that P. costalis preferred Theporsia purpurea and Mimosa pudica for laying their eggs and producing foam, over the other tested plants. P. costalis produce their foam on either nodes or internodes on monocotyledons (30%) (p < 0.05), whereas on dicotyledons, they produce more foam on the stems (63.8%) than on the leaves (6.2%) (p < 0.01). The number of nymphs in each piece of foam from P. costalis varied from 1 to 3 (mean = 1.8 per plant). They produced their foam (5.7 to 45.2 cm) from the ground level on a plant. The length and breadth of a piece of foam ranged from 1.0 to 3.9 cm and 0.6 to 4.7 cm, respectively. The foam tended to be cooler than the environment. Qualitative profiling showed that the foam consists of carbohydrates, including maltose; trypsin; amino acids; protease. The foam was also analyzed using a spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), gas chromatography–mass spectroscopy (GC-MS), and high-performance liquid chromatography (HPLC). The antimicrobial activity of the biofoam was the greatest against Staphylococcus aureus, the growth of which was reduced by 55.9 ± 3.9%, suggesting that the foam could be used as an antimicrobial product. However, no activities were observed against Fusarium oxysporum and Candida albicans.


Foods ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 204 ◽  
Author(s):  
Sijing Li ◽  
Keren Bindon ◽  
Susan Bastian ◽  
Kerry Wilkinson

The tannin and polysaccharide profiles and therefore sensory properties of wine are influenced by fruit maturity at harvest, and practices employed during winemaking. This study investigated the extent to which commercial winemaking supplements (skin and seed tannins, and mannoprotein (MP)) can enhance the mouthfeel properties of red wine, in particular, wine made from grapes harvested before commercial ripeness (early-harvest). Supplements were added to wines made from Shiraz grapes harvested at 20.8 and 24.5 °Brix. The chemical composition and mouthfeel properties of wines were then determined by high performance liquid chromatography and descriptive analysis (DA), respectively. Wines made from riper grapes had higher levels of tannin than wines made from early-harvest grapes, but similar polysaccharide levels were observed. The addition of seed oenotannin yielded higher tannin levels than addition of skin oenotannin, particularly for wines made from early-harvest grapes. The DA panel perceived sensory differences between H1 and H2 wines, but could not perceive any effect of supplementation on wine mouthfeel properties, with the exception of a minor increase in sweetness, attributed to mannoprotein addition to H1 wines, even when MP was added to wines at 2.5 times the level recommended for use in Australia.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 505
Author(s):  
Zildene de Sousa Silveira ◽  
Nair Silva Macêdo ◽  
Suieny Rodrigues Bezerra ◽  
Abolghasem Siyadatpanah ◽  
Henrique Douglas Melo Coutinho ◽  
...  

Amburana cearensis (Allemão) ACSm. belongs to the Fabaceae family and occurs in the Brazilian semiarid, Argentina, Paraguay, Bolivia, and Peru. Numerous studies that portray its ethnobotany, use in popular medicine, chemical composition, and biological activities exist in the literature. This review aimed to provide an overview of the chemical composition, ethnopharmacology, and biological activities associated with A. cearensis and its isolated constituents. Information was collected from internet searches in the Scopus, Medline, PubMed, Google Scholar, and ScienceDirect databases were performed covering publications from 1997–2020. An ethnopharmacological literature analysis revealed that A. cearensis is used to treat a wide range of respiratory disorders in addition to intestinal, circulatory, and inflammatory problems. Coumarins, flavonoids, phenolic glycosides, phenolic acids, phenylpropanoid derivatives, and triterpenoids, among others, have been reported as active compounds, with High-Performance Liquid Chromatography (HPLC) being the main analytical technique used. The A. cearensis extracts and compounds presented several biological activities, including antimicrobial, antinociceptive, anti-inflammatory, antioxidant, neuroprotective, and myorelaxant activities, among others. This review provides a useful bibliography for future investigations and A. cearensis applications; however, future studies should focus on its toxic effects and the mechanisms of action of its extracts and isolated constituents to guide clinical applications.


2019 ◽  
Vol 70 (11) ◽  
pp. 3878-3880
Author(s):  
Rodica Roxana Constantinescu ◽  
Gabriel A. Zainescu ◽  
Marian Crudu ◽  
Gheorghe Bostaca

Currently, the leather industry has to deal with very high costs for waste treatment and disposal. As a result, it is recommended to subject the organic protein waste from tanning to biochemical treatments for recycling in the industry. The degree of novelty lies primarily in the fact that the starting point of the promoted technologies is obtaining new complex products by processing organic waste and using it in tanneries. The lime fleshings resulting from the hide fleshing operation represents the highest amount of reusable leather material of approx. 25%. This paper presents an innovative process for the biochemical degradation of hide waste resulting from hide fleshing in order to obtain a retanning/filling agent used in leather processing.


2013 ◽  
Vol 3 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Sanjay P. Ahuja ◽  
Sindhu Mani

High Performance Computing (HPC) applications are scientific applications that require significant CPU capabilities. They are also data-intensive applications requiring large data storage. While many researchers have examined the performance of Amazon’s EC2 platform across some HPC benchmarks, an extensive study and their comparison between Amazon’s EC2 and Microsoft’s Windows Azure is largely missing with metrics such as memory bandwidth, I/O performance, and communication and computational performance. The purpose of this paper is to implement existing benchmarks to evaluate and analyze these metrics for EC2 and Windows Azure that span both Infrastructure-as-a-Service and Platform-as-a-Service types. This was accomplished by running MPI versions of STREAM, Interleaved or Random (IOR) and NAS Parallel (NPB) benchmarks on small and medium instance types. In addition a new EC2 medium instance type (m1.medium) was also included in the analysis. These benchmarks measure the memory bandwidth, I/O performance, communication and computational performance.


Author(s):  
Xiaoyu Wang ◽  
Tinghao Jia ◽  
Lun Pan ◽  
Qing Liu ◽  
Yunming Fang ◽  
...  

AbstractThe development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels. However, the measurement of fuel properties is time-consuming, cost-intensive, and limited to the operating conditions. The physicochemical properties of aerospace fuels are directly influenced by chemical composition. Thus, a thorough investigation should be conducted on the inherent relationship between fuel properties and composition for the design and synthesis of high-grade fuels and the prediction of fuel properties in the future. This work summarized the effects of fuel composition and hydrocarbon molecular structure on the fuel physicochemical properties, including density, net heat of combustion (NHOC), low-temperature fluidity (viscosity and freezing point), flash point, and thermal-oxidative stability. Several correlations and predictions of fuel properties from chemical composition were reviewed. Additionally, we correlated the fuel properties with hydrogen/carbon molar ratios (nH/C) and molecular weight (M). The results from the least-square method implicate that the coupling of H/C molar ratio and M is suitable for the estimation of density, NHOC, viscosity and effectiveness for the design, manufacture, and evaluation of aviation hydrocarbon fuels.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Bing Yang ◽  
Yan Liu

A ring-plate-type cycloid speed reducer is one of the most important reducers owing to its low volume, compactness, smooth and high performance, and high reliability. The vibration and noise tests of the reducer prototype are completed using the HEAD acoustics multichannel noise test and analysis system. The characteristics of the vibration and noise are obtained based on coherence analysis and the noise sources are identified. The conclusions provide the bases for further noise research and control of the ring-plate-type cycloid reducer.


Sign in / Sign up

Export Citation Format

Share Document