scholarly journals DIC TEXTURING-ASSISTED ACCELERATED SOLVENT EXTRACTION OF ACTIVE MOLECULES OF POMEGRANATE PEEL

2016 ◽  
Vol 12 (9) ◽  
pp. 4023-4044
Author(s):  
Karim Allaf ◽  
Khaoula Elaydi ◽  
Ibtisam Kamal ◽  
Ahmed Bedoui

The current work discusses the use of Instant Controlled Pressure Drop (DIC) as a pretreatment texturing stage intensifying phenolic compound extraction from South Tunisian Punicagranatum L. peels in both cases of conventional and Accelerated Solvent Extraction (ASE). Response Surface Methodology (RSM) allowed identifying the effects of DIC processing parameters on the yields of Total Phenol Compounds (TPC), Total Flavonoid (TF), Condensed Tannins (CT), and Hydrolysable Tannins (HT), and antioxidant capacities via 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity and ß-carotene-linoleic acid as responses. Comparative methods were used to evaluate DIC-textured and Raw samples. The results obtained confirmed that appropriate DIC-texturing improved both kinetic and yield of bioactive compound extraction using ASE from Punicagranatum L. peels. Extraction kinetics was studied through Coupled Washing-Diffusion CWD model. The effective diffusivity was identified and quantified ranged from 0.27 to 8.22 against 0.4710-10 m2s-1 for DIC textured and raw material (RM), respectively. DIC swelling enabled solid vegetal material matrix to expand and be more adapted to mass transfer thus increasing extractability of the phenol compounds. Scanning Electron Microscope SEM showed that DIC generated pores with an average diameter of 50 µm.

2012 ◽  
Vol 1 (1) ◽  
pp. 24 ◽  
Author(s):  
I. Kamal ◽  
A. Gelicus ◽  
K. Allaf

<p>The present work is directed towards the impacts of Détente InstantanéeContrôléeDIC (French, for instant controlled pressure-drop) in terms of decaffeination and drying of Ethiopian green coffee beans (GCBs).DICconsisted in subjecting the product to a high-pressure saturated steam during some seconds and ended with an abrupt pressure drop towards a vacuum. A conventional aqueous extraction and a hot air-drying took place after DIC treatment. Inthis study, Response Surface Method (RSM) was used withDIC saturated steam pressure P, thermal treatment time t, and initial moisture content W asthe independent variables. Both direct DICextract recovered from the vacuum tank and the aqueous extracts wereanalyzed and quantified using the reversed phase-HPLC. With decaffeination ratiosas dependent variables, P and Wwere the most significant operating parameters; whilet was much weaker.Total decaffeination ratio could reach 99.5% after DIC treatment at specificconditions of W=11.00% db, P=0.1 MPa, and t=35swhile it was only 58% when achieved with untreated raw material.</p> The effective diffusivity  and the starting accessibility  were calculated from the diffusion/surface interaction kinetic model of hotair drying after DIC treatment. They dramatically increased with P and t while W had a weak impact.Thus, at the optimized DICconditions, and  increased from 0.33 to 12.60 10<sup>-10</sup>m² s<sup>-1</sup>and from 0.75 to 11.53 g/100 g db, respectively. Drying time needed to reach 5% db became 60 min instead of 528 min for untreated raw material. <p>RSM analysis showed that the DIC saturated steam pressure P and the initial moisture content W were the most significant variables both affecting the decaffeination ratio; the impact of the total thermal processing time t was much weaker. Total decaffeination ratio could reach 99.5% after DIC treatment at specific conditions of W=11.00% db, P=0.1 MPa, and t=35 s while it was only 58% when achieved with untreated raw material.</p> <p>Using diffusion/surface interaction model of hot-air drying kinetics just after DIC treatment, we could observe that DIC expansion dramatically improved the drying kinetic parameters, with P and t as the most significant DIC operating parameters while the impact of W was much weaker. Thus, the optimized DIC treatment allowed the effective diffusivity  and the starting accessibility to increase from 0.33 10<sup>-10</sup> m² s<sup>-1</sup> and 0.75 g/100 g db to 12.60 10<sup>-10</sup> m² s<sup>-1</sup> and 11.53 g/100 g db, respectively. Drying time needed to reach 5% db became 60 min instead of 528 min for untreated raw material.</p>


2018 ◽  
Vol 83 (11) ◽  
pp. 1223-1228 ◽  
Author(s):  
Vanja Seregelj ◽  
Vesna Tumbas-Saponjac ◽  
Anamarija Mandic ◽  
Gordana Cetkovic ◽  
Jasna Canadanovic-Brunet ◽  
...  

Carrot is considered to be rich in bioactive antioxidants, both lipophilic (carotenoids) and hydrophilic (phenolic compounds). In the present study, the conditions for accelerated solvent extraction (ASE) of bioactive compounds from carrots (Daucus carota L.) were optimized using response surface methodology (RSM). Box?Behnken design was employed for the experimental design to obtain the optimized combination of extraction temperature, time, and number of extraction cycles. Total carotenoid content (TCar), total polyphenol content (TPh), free radical scavenging activity (SA) and reducing power (RP) of the obtained extracts were used as responses for the optimization. Considering the four quality indicators, the ideal extraction conditions were found to be: 120 ?C, 60 min and three extraction cycles. Under these conditions, predicted values of 28.84 mg ?-carotene/100 g for TCar; 530.81 mg GAE/100 g for TPh; 2572.29 ?mol TE/100 g for SA and 1336.26 ?mol TE/100 g for RP were obtained with high desirability (0.975) and no significant difference (p < 0.05) with the experimental values.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Sicong Chen ◽  
Xunfan Wei ◽  
Zhuoxiao Sui ◽  
Mengyuan Guo ◽  
Jin Geng ◽  
...  

Among different insects, the American cockroach (Periplaneta americana) has been bred in industrial scale successfully as a potential resource of protein, lipid, and antibacterial peptide. However, the application of its chitosan has not been studied widely, which has hindered the sufficient utilization of P. americana. In this paper, the chitosan from P. americana was separated, characterized, and processed into film (PaCSF) to examine its potential of being applied in food packaging. As the results of different characterizations showed, PaCSF was similar to shrimp chitosan film (SCSF). However, concerning the performances relating to food packaging, the two chitosan films were different. PaCSF contained more water (42.82%) than SCSF did, resulting in its larger thickness (0.08 mm). PaCSF could resist UV light more effectively than SCSF did. Concerning antioxidant activity, the DPPH radical scavenging ability of PaCSF increased linearly with time passing, reaching 72.46% after 8 h, which was better than that of SCSF. The antibacterial activity assay exhibited that PaCSF resisted the growth of Serratia marcescens and Escherichia coli more effectively than SCSF did. The results implied that P. americana chitosan could be a potential raw material for food packaging, providing a new way to develop P. americana.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Mohd Azizi Che Yunus ◽  
Manzurudin Hasan ◽  
Norasikin Othman ◽  
Siti Hamidah Mohd-Setapar ◽  
Liza Md.-Salleh ◽  
...  

Kajian ini bertujuan untuk mengkaji kesan saiz zarah ke atas pengekstrakan sebatian catechin daripada biji Areca catechu L. dengan menggunakan Pengekstrakan Pelarut Terpecut (PPT). Saiz zarah biji Areca catechu dipelbagaikan dari 75 μm sehingga 500 μm. Pengekstrakan telah dijalankan padaparameter tetap iaitu suhu (140oC), tekanan (1500 psi), masa (10 minit), isipadu semburan (60%) dan satu kitaran pengekstrakan, masing-masing. Hasil minyak peratusan yang lebih tinggi adalah 300 mg minyak / gram sampel (30.00% pati minyak) ditemui pada 125 μm. Walaubagaimanapun, kandungan catechin dalam pati minyak hanya 0.0375 mg catechin / gram sampel. Saiz zarah yang terbaik dalam julat uji kaji ini telah dikenal pasti pada 500 μm yang memberikan kandungan catechin yang tinggi iaitu 0.0515 mg catechin / gram sampel dari 247.5 mg minyak / gram sampel (24.75% pati minyak). Kata kunci: Saiz zarah; catechin; LC-MS-TOF; pengekstrakan pelarut terpecut The purpose of this work is to investigate the effects of particle size on the extraction of catechincompound from Areca catechu L. seeds by using Accelerated Solvent Extraction (ASE). The particle sizes of Areca catechu L. seeds are varied from 75 µm until 500 µm. The extraction is conducted at fixed parameters which are temperature (140oC), pressure (1500 psi), extraction time (10 minutes), flush volume (60%) and the static cycle is done for 1 extraction cycle respectively. Higher percentage oil yield of 300mg oil/gram of sample (30.00% oil yield) is found at 125 µm. However, the amount of catechin in oil yields is only 0.0375 mg of catechin/gram of sample. The best of particle size within the experimental range has been identified at 500 µm which gives a high content of catechin with 0.0515 mg Catechin/gram of sample from 247.5 mg oil/gram of sample (24.75% oil yield). Keywords: Particle size; catechin; LC-MS-TOF; accelerated solvent extraction


2002 ◽  
Vol 37 (2) ◽  
pp. 141-150 ◽  
Author(s):  
S. Tao ◽  
Y. H. Cui ◽  
J. Cao ◽  
F. L. Xu ◽  
R. Dawson ◽  
...  

2012 ◽  
Vol 730-732 ◽  
pp. 781-786
Author(s):  
Hélder Puga ◽  
Joaquim Barbosa ◽  
Carlos Silva Ribeiro

Machining operations of cast parts usually generate considerable amounts of waste in the form of chips (usually 3–5% of the casting weight). Traditionally, swarf is sold to scrapers and remelters, but this option is quite expensive because the selling price is roughly 30% of the acquisition price of the commercial 2nd melt raw material. For most aluminium foundries that incorporate machining operations in their products, reusing aluminium chips as raw material for the melting stocks is perhaps the best option as waste management policy in what concerns to economical and technical aspects. Nevertheless, aluminium swarf is a low density product (0.25 kg/dm3) and is usually covered by a thin film of aluminium oxide and machining fluid. Melting such a product without suitable previous preparation leads to very low metal recovery rates, high energy consumption, gases and smoke generation and very low quality of the final product. During the last years, the authors have developed a high efficient and environmentally friend aluminium swarf recycling technique, using direct incorporation in aluminium melts. The influence of processing parameters, namely melt temperature and holding time, melting atmosphere, swarf briquetting pressure and melting charge composition in the metal recovery yield and dross generation was studied and characterized, and the optimal processing parameters were established. The microstructure of the final product obtained in those conditions was evaluated and is also presented. It is shown that the recycling efficiency depends on the swarf conditioning, the melting technique and the melt treatment methodology. Swarf moisture reduction, induction melting under protective atmosphere and a specially developed degassing technique were found the most important factors influencing the recycling process. By using the developed technique, cast ingots with microstructure and sanity similar to commercially available AlSi12Cu1 2nd melt raw material were successfully obtained with minimal dross formation and metal recovery rates around 90%, without using traditional salts and fluxes.


Sign in / Sign up

Export Citation Format

Share Document