scholarly journals Study on the Technology Conditions of Flue Gas Desulfurization with Organic Solvent

2013 ◽  
Vol 1 (1) ◽  
pp. 18-26
Author(s):  
Wanren Chen ◽  
Hua Li ◽  
Xiaoshuang Chen

The technology experiment on Flue Gas Desulfurization (FDG) by DMSO method is studied in this paper, and the desulfurization efficiency is set out in various conditions. The results show that the desulfurization efficiency can be over 94% under the condition as follows: the rate of flow of DMSO=100 L/h, L/G=40~50, absorbent concentration = 100 %DMSO, T=room temperature, the gas flow=60 ml∙min-1, inlet SO2 concentration= 0.1-0.5 %, the time of operation must be controlled in 30 minutes.

2014 ◽  
Vol 675-677 ◽  
pp. 422-425
Author(s):  
Jun Xia Liu

This Paper introduced the research background and technical features of the simulative experiments in the laboratory with the sorbent of lime solution without lime particles. By means of the effects of various influencing factors on SO2 removal efficiency were studied carefully. These parameters include gas flow rate (G), inlet SO2 concentration, liquid-to-gas ratios, the height of the packing and the additive, at the same time menstruating the pH value of the liquid flowing from the tower. To improve desulfurization efficiency of limestone in the wet flue gas desulfurization (WFGD), effect of the hexanedioic acid additive on limestone desulfurization agent were studied. The result shows that this system has advantages of high efficiency, stable, low investment and low circulating cost. The result could give a reference to optimization and will be helpful in selecting desulfurization techniques.


2011 ◽  
Vol 356-360 ◽  
pp. 1723-1727 ◽  
Author(s):  
Lin Zhi Zhai ◽  
Qin Zhong ◽  
Xin Rong Wang

Experiments were performed on the packed tower with 150mm diameter and 2800mm high to study the wet flue gas desulfurization continuously. The results shows that the suitable conditions for the SO2absorption process of 0.3mol•L-1ethylenediamine/phosphoric acid and ethylenediamine/boric acid solutions: pH value was 6.0~7.0, liquid-gas ratio was 0.82L•m-3. The import SO2concentration and the flue gas flow were separately at 500×10-6~3100×10-6and 110m3•h-1~150m3•h-1, the desulfurization efficiency exceeded 97%. Under the same conditons, ethylenediamine/boric acid has a better desulfurization and was more suitable for the flue gas desulfurization in a wider fluctuation.


Author(s):  
Yutong Liu ◽  
Wenju Jiang ◽  
Lu Yao ◽  
Lin Yang ◽  
Xia Jiang

The removal of SO2 from flue gases is necessary for eliminating haze and controlling acid rain. However, developing the traditional wet and dry flue-gas desulfurization (FGD) is challenging due to the disposal issue of several byproducts. Manganese (Mn) orebased wet FGD possesses many advantages, including good desulfurization property, low cost, and high economic benefit. The environment friendliness and reusability of MnSO4 provide new ideas and methods in the future research direction of FGD. This review summarizes the background information of Mn ore slurry desulfurization, the desulfurization mechanism, the technological process, and the desulfurization devices. The role of operating parameters, such as temperature, liquid/solid ratio, pH, SO2 concentration, and particle size, in the desulfurization efficiency and manganese leaching rate are also discussed. The temperature (20°C-80°C) has exerted little effect on the desulfurization efficiency, whereas a low pH value is beneficial for SO2 removal. Moreover, a low inlet SO2 concentration and small particle size are beneficial for SO2 removal. The control and digestion techniques related to the byproduct (manganese dithionate) are also presented, along with the future development direction of Mn ore-based wet FGD in different industries.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1269
Author(s):  
Yuzhen Jin ◽  
Weida Zhao ◽  
Zeqing Li

The deflector and the rod bank are commonly used to optimize flue gas distribution in the original spray tower (OST) of a wet flue gas desulfurization system (WFGD). In this paper, the internal optimization mechanism of the deflector desulfurization spray tower (DST) and the rod bank desulfurization spray tower (RBST) are studied. Based on the Euler–Lagrange method, the standard k-ε turbulence model, an SO2 absorption model and a porous media model, the numerical simulation of the desulfurization spray tower is carried out with the verification of the model rationality. The results show that there are gas-liquid contact intensification effects in DST and RBST. Compared with OST, gas-liquid contact intensification enhances the heat and mass transfer effects of DST and RBST. The temperature difference between inlet and outlet of flue gas increased by 3.3 K and the desulfurization efficiency of DST increased by 1.8%; the pressure drop decreased by 37 Pa. In RBST, the temperature difference between the flue gas inlet and outlet increased by 5.3 K and the desulfurization efficiency increased by 3.6%; the pressure drop increased by 33 Pa.


2006 ◽  
Vol 2 (2) ◽  
pp. 110-119
Author(s):  
Wanren Chen ◽  
Hua Li ◽  
Xiaoshuang Chen

Compared with the traditional methods of removal SO2 from flue gas, the organic solvent absorption has some advantages as low investment, high SO2 absorption efficiency and desorption efficiency. For the industrial application of organic solvent absorption as soon as possible, some laboratory research on selectively removing SO2 and NOx from flue gas in the presence of CO2 and an enlarged experiment has been done with a novel absorbent of Mn(II)+ DMSO. The effect on desulfurization selectivity for absorbents is studied. And the regeneration capacities for absorbent are researched. The result shows that the novel absorbent has not only strong desulfurization efficiency, but also good selectivity for SO2 and CO2, the feasibility of desulfurization absorbent has been proved.


Resources ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 121
Author(s):  
Elżbieta Hycnar ◽  
Tadeusz Ratajczak ◽  
Magdalena Sęk

Dolomites are not used as SO2 sorbents in fluid combustion technology. The literature data show fundamental discrepancies in the possibility of such use. They mainly concern the role of magnesium in the sorption process of SO2 and the durability of desulfurization products under high-temperature conditions. The article demonstrates that MgO is actively involved in the SO2 binding under fluidized furnace conditions. The resulting products of sulfation contain magnesium in their compositions, and their thermal transformations begin only after the temperature exceeds 1100 °C. It has been shown that dolomites are a potential raw material for the production of SO2 sorbents for fluid combustion technology, and their use is justified due to the higher desulfurization efficiency. Parameters of dolomite descriptions were given, by which it will be possible to predict the effects of flue gas desulfurization before the dolomites’ use in industrial conditions. It has been shown that there are opportunities to expand the domestic raw-material base for the production of SO2 sorbents, based on both dolomite resources present in deposits and dolomite waste accumulated in dumps, as well as generated during the current exploitation and processing of dolomites.


2019 ◽  
Vol 116 ◽  
pp. 00101
Author(s):  
Tomasz Wypiór ◽  
Renata Krzyżyńska

The paper presents data concerning the influence of ammonia on wet flue gas desulfurization (WFGD) absorber. Paper presents preliminary results of an industrial scale study on WFGD absorber, that collects flue gases from four boilers with total flue gas flow capacity of the WFGD equal to 1 500 000 Nm3/h. Each boiler is equipped with selective non-catalytic reduction (SNCR) with urea injection. It was shown, that ammonia present in the flue gas upstream the WFGD increases the pH of absorption slurry, impacting the desulphurization process. In addition, analysis of particulate matter upstream and downstream the absorber shows an increase of the concentration of ammonium species in the particulate matter about 14 times, as average. Moreover, a non-optimized denitrification process can cause a high NH4+ concentration in the absorption slurry (up to 768 mg/L) and raw wastewater (up to 891 mg/L).


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5917 ◽  
Author(s):  
Nguyen Van Duc Long ◽  
Dong Young Lee ◽  
Kim Myung Jin ◽  
Kwag Choongyong ◽  
Lee Young Mok ◽  
...  

Seawater flue gas desulfurization (SWFGD) is considered to be a viable solution for coastal and naval applications; however, this process has several drawbacks, including its corrosive absorbent; low vapor loading capacity since the solubility of sulfur oxides (SOx) in seawater is lower than that of limestone used in conventional methods; high seawater flowrate; and large equipment size. This has prompted process industries to search for possible advanced and intensified configurations to enhance the performance of SWFGD processes to attain a higher vapor loading capacity, lower seawater flowrate, and smaller equipment size. This paper presents an overview of new developments as well as advanced and intensified configurations of SWFGD processes via process modifications such as modification and optimization of operating conditions, improvement of spray and vapor distributors, adding internal columns, using square or rectangular shape, using a pre-scrubber, multiple scrubber feed; process integration such as combined treatment of SOx and other gases, and waste heat recovery; and process intensification such as the use of electrified sprays, swirling gas flow, and rotating packed beds. A summary of the industrial applications, engineering issues, environmental impacts, challenges, and perspectives on the research and development of advanced and intensified SWFGD processes is presented.


2012 ◽  
Vol 608-609 ◽  
pp. 1177-1180 ◽  
Author(s):  
Hui Min Liang ◽  
Jie Zhang ◽  
Yuan Yuan Cai

In order to heat the gas of Boiler tail to comply with request of emission temperature of environmental regulations, heat pipe gas to gas heater (GGH) is used in the wet flue gas desulfurization (FGD) system. Heat pipe GGH is characterized by high efficiency, small losses of fluid resistance, and no leak of the flue gas, and desulfurization system possesses higher desulfurization efficiency, no additional power consumption, low costs of operation and maintenance, and it also solves the problem of acid corrosion and scaling, which is more suitable for wet flue gas desulfurization system.


Sign in / Sign up

Export Citation Format

Share Document