scholarly journals Research on selectivity removing SO2 from flue gas with a novel absorbent

2006 ◽  
Vol 2 (2) ◽  
pp. 110-119
Author(s):  
Wanren Chen ◽  
Hua Li ◽  
Xiaoshuang Chen

Compared with the traditional methods of removal SO2 from flue gas, the organic solvent absorption has some advantages as low investment, high SO2 absorption efficiency and desorption efficiency. For the industrial application of organic solvent absorption as soon as possible, some laboratory research on selectively removing SO2 and NOx from flue gas in the presence of CO2 and an enlarged experiment has been done with a novel absorbent of Mn(II)+ DMSO. The effect on desulfurization selectivity for absorbents is studied. And the regeneration capacities for absorbent are researched. The result shows that the novel absorbent has not only strong desulfurization efficiency, but also good selectivity for SO2 and CO2, the feasibility of desulfurization absorbent has been proved.

2009 ◽  
Vol 610-613 ◽  
pp. 85-96 ◽  
Author(s):  
Jing Dong Zhao ◽  
Shi Jun Su ◽  
Nan Shan Ai ◽  
Xiao Fan Zhu

A mathematical model for flue gas desulfurization using pyrolusite pulp in jet bubbling reactor (JBR) was described. Firstly, based on the concept of two stages mass balance with chemical reaction, two models were set up, for jet bubbling zone and rising bubble zone, respectively, according to the construction of JBR. The models consist of two coupling differential equations and were solved simultaneously by integral and separation of the variables. Then the SO2 absorption efficiency expression was developed, considering the great discrepancy existing between the gas-side mass transfer coefficients of the jet bubbling zone and gas bubble rising zone. The final expression associates SO2 absorption efficiency with process conditions and JBR structure parameters, which can give some instruction and guidance for the study of reactor operation process. Predicted results from the theoretical model, including effect of pH value of the pulp, flue gas temperature and inlet SO2 concentration of flue gas on SO2 absorption efficiency, were found to be in good agreement with experimental data obtained in a jet bubbling reactor. The model provides a basis for the process scale up and operating guide.


2013 ◽  
Vol 1 (1) ◽  
pp. 18-26
Author(s):  
Wanren Chen ◽  
Hua Li ◽  
Xiaoshuang Chen

The technology experiment on Flue Gas Desulfurization (FDG) by DMSO method is studied in this paper, and the desulfurization efficiency is set out in various conditions. The results show that the desulfurization efficiency can be over 94% under the condition as follows: the rate of flow of DMSO=100 L/h, L/G=40~50, absorbent concentration = 100 %DMSO, T=room temperature, the gas flow=60 ml∙min-1, inlet SO2 concentration= 0.1-0.5 %, the time of operation must be controlled in 30 minutes.


2009 ◽  
Vol 610-613 ◽  
pp. 32-40 ◽  
Author(s):  
Jing Dong Zhao ◽  
Shi Jun Su ◽  
Xiao Fan Zhu ◽  
Hong Lei Wang

It’s a gas-liquid-solid three-phase reaction system in the reactor for flue gas desulfurization using pyrolusite pulp. Based on the two-film mass transfer theory and shrine core model, the macro-kinetics of flue gas desulfurization using pyrolusite pulp in a double magnetic stirred reactor were investigated. The effects of diffusion in solid film, surface chemical reaction, diffusion in liquid phase and gas phase of the process, have been carried out to distinguish the control step of the process. It was observed that SO2 absorption efficiency increased with the decreasing of pyrolusite particle size and varied gently when the pyrolusite particle diameter decreased to 0.18mm. SO2 absorption efficiency increased not significantly along with the increase of temperature and the liquid phase stirring speed but increased significantly along with the increase of the gas phase stirring speed. Experiment results showed that under simulated industrial conditions, gas phase diffusion was the control step compared to other related factors, given that pyrolusite particle diameter was kept below 0.1mm.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 759
Author(s):  
Edel Díaz ◽  
Raúl Mateos ◽  
Emilio J. Bueno ◽  
Rubén Nieto

Presently, the trend is to increase the number of cores per chip. This growth is appreciated in Multi-Processor System-On-Chips (MPSoC), composed of more cores in heterogeneous and homogeneous architectures in recent years. Thus, the difficulty of verification of this type of system has been great. The hardware/software co-simulation Virtual Platforms (VP) are presented as a perfect solution to address this complexity, allowing verification by simulation/emulation of software and hardware in the same environment. Some works parallelized the software emulator to reduce the verification times. An example of this parallelization is the QEMU (Quick EMUlator) tool. However, there is no solution to synchronize QEMU with the hardware simulator in this new parallel mode. This work analyzes the current software emulators and presents a new method to allow an external synchronization of QEMU in its parallelized mode. Timing details of the cores are taken into account. In addition, performance analysis of the software emulator with the new synchronization mechanism is presented, using: (1) a boot Linux for MPSoC Zynq-7000 (dual-core ARM Cortex-A9) (Xilinx, San Jose, CA, USA); (2) an FPGA-Linux co-simulation of a power grid monitoring system that is subsequently implemented in an industrial application. The results show that the novel synchronization mechanism does not add any appreciable computational load and enables parallelized-QEMU in hardware/software co-simulation virtual platforms.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1269
Author(s):  
Yuzhen Jin ◽  
Weida Zhao ◽  
Zeqing Li

The deflector and the rod bank are commonly used to optimize flue gas distribution in the original spray tower (OST) of a wet flue gas desulfurization system (WFGD). In this paper, the internal optimization mechanism of the deflector desulfurization spray tower (DST) and the rod bank desulfurization spray tower (RBST) are studied. Based on the Euler–Lagrange method, the standard k-ε turbulence model, an SO2 absorption model and a porous media model, the numerical simulation of the desulfurization spray tower is carried out with the verification of the model rationality. The results show that there are gas-liquid contact intensification effects in DST and RBST. Compared with OST, gas-liquid contact intensification enhances the heat and mass transfer effects of DST and RBST. The temperature difference between inlet and outlet of flue gas increased by 3.3 K and the desulfurization efficiency of DST increased by 1.8%; the pressure drop decreased by 37 Pa. In RBST, the temperature difference between the flue gas inlet and outlet increased by 5.3 K and the desulfurization efficiency increased by 3.6%; the pressure drop increased by 33 Pa.


2007 ◽  
Vol 9 (2) ◽  
pp. 5-9 ◽  
Author(s):  
Roland Milker ◽  
Zbigniew Czech ◽  
Marta Wesołowska

Synthesis of photoreactive solvent-free acrylic pressure-sensitive adhesives in the recovered system The present paper discloses a novel photoreactive solvent-free acrylic pressure-sensitive adhesive (PSA) systems, especially suitable for the so much adhesive film applications as the double-sided, single-sided or carrier-free technical tapes, self-adhesive labels, protective films, marking and sign films and wide range of medical products. The novel photoreactive solvent-free pressure-sensitive adhesives contain no volatile organic compounds (residue monomers or organic solvent) and comply with the environment and legislation. The synthesis of this new type of acrylic PSA is conducted in common practice by solvent polymerisation. After the organic solvent are removed, there remains a non-volatile, solvent-free highly viscous material, which can be processed on a hot-melt coating machine at the temperatures of about 100 to 140°C.


Author(s):  
Wlodzimierz Blasiak ◽  
Weihong Yang

This work presents the main features, advantages and evaluation of applications of the novel “Ecotube” combustion improvement and emission reduction system by Ecomb AB of Sweden and Synterprise, LLC of Chattanooga, Tennessee. In the Ecotube system, the nozzles used for mixing are put on the suitable position inside the combustion chamber to control uniformity of temperature, mixing and reactants distribution in boilers and incinerators since the formation and reduction of pollutants (NO, CO and VOC) and in-furnace reduction processes (Air/Fuel staging, SNCR, flue gas recirculation and SOx reduction by dry sorbent injection) are related directly to mixing in a combustion chamber. The novel Ecotube combustion improvement system allows better control of mixing of the gases for example from a primary combustion zone with secondary combustion air or a recirculated flue gas. By means of the novel system it is possible to better control the residence time and to some degree gas phase temperature distribution as well as the heat release distribution in the furnace of the waste incinerators or boilers. This new combustion improvement system can be applied to supply different gas or liquid media — for example air, fuel, urea or even solid powder. Using the system a more efficient and environmentally clean combustion or incineration process can be performed. The Ecotube System may be used to meet increasingly stringent environmental emissions regulations, such as NOx SIP Call, while it delivers added benefits of reduced and stabilized CO and reduced fly ash and improved boiler efficiency. The study tool used in this work to present influence of the Ecotube system design on temperature as well as uniformity of reactants and flow field is numerical modeling. Using this tool, the influence of the position of the Ecotube system and the injection angle of the nozzles are studied. The studied boilers included the biomass waste incinerator, municipal solid waste incinerator and coal fired boiler. The concept of the Heat Release Distribution Ratio is proposed to classify the heat release inside the upper furnace of the boilers or incinerators. The results show that Ecotube spreads reaction zone over a larger furnace volume. The furnace flame occupation coefficient can be as high as 45% with the Ecotube system and it is around 40% higher comparing with the conventional multinozzle mixing system. Ecotube system allows keeping far more uniform heat release distribution, more uniform temperature distribution, and thus longer life of the heat transfer surfaces inside the furnace. Position of the Ecotube system and the injection angle of the nozzles are of primary importance and can be used as a technical parameter to control the boiler operation at different loads and varying operating conditions.


2012 ◽  
Vol 518-523 ◽  
pp. 2509-2513 ◽  
Author(s):  
Hai Long Liu ◽  
Yan Liu ◽  
Jin Gang Wang ◽  
Shao Feng Zhang

In this paper the desulfurization and denitration of simulation flue gas using calcium hypochlorite as absorbent was studied experimentally. Absorption experiments of the desulfurization and denitration in calcium hypochlorite solutions were carried out in a Porous Globular Gas Liquid Reactor (PGGLR) which was a new and innovative core design. Three experiments were conducted at NTP conditions. The mechanism of removal for SO2 and NOX was investigated. Under these experiment conditions, the removal efficiency of 100%, 67% for SO2 and NOX were achieved. The results can offer valuable references for industrial application.


2017 ◽  
Vol 31 (2) ◽  
pp. 1771-1777 ◽  
Author(s):  
Wen Li ◽  
Ying Liu ◽  
Lihong Wang ◽  
Guanjun Gao

2016 ◽  
Vol 26 (3) ◽  
pp. 319-323 ◽  
Author(s):  
Chenxi Fu ◽  
Zifeng Wang ◽  
Junyi Liu ◽  
Hongbo Jiang ◽  
Guangming Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document