scholarly journals Modeling in Water Resources Management in East Nile Delta: Review

2020 ◽  
Vol 17 (2) ◽  
pp. 41-46
Author(s):  
Heba F. Abdelwahab ◽  
Elsayed M. Ramadan ◽  
Abdelazim M. Negm

AbstractIt is acknowledged that providing a safe water supply for all countries is one of the major challenges of the twenty-first century. Egypt is one of the greatest countries affected in Africa and Middle East. The Nile is facing a major water shortage due to the limited water resources and the the demand is growing as a result high population growth and development in industrial and agricultural sectors. This paper has been motivated by the fact that there is no up-to-date literature review of the optimal operation of Water Resources. The analysis of the reviewed literature is structured along five broad branches: (1) Mathematical Optimization Modelling Studies, (2) Numerical Simulation Modelling Studies, (3) Geographical Information Systems “GIS” based Studies, (4) Ecological Studies, (5) Water Reuse Studies. This review is limited to surface water but groundwater has been inexplicitly included. The paper concludes the best way to identify knowledge to cover the gap between water supply and demands and to guide future researches on water resources planning and management.

2011 ◽  
Vol 63 (8) ◽  
pp. 1574-1581 ◽  
Author(s):  
Samanpreet Kaur ◽  
Rajan Aggarwal ◽  
Ashwani Soni

The state of Punjab (India) has witnessed a spectacular increase in agricultural production in the last few decades. This has been possible due to high use of fertilizers, good quality seeds and increased use of water resources. This increased demand of water resources has resulted in extensive use of groundwater in the central districts of the state and surface water (canals) in South-West Punjab, where groundwater is of poor quality in general. The state has been facing the twin problem of water table decline/rise in different parts. Efficient management relies on comprehensive database and regular monitoring of the resources. GIS is one of the important tools for integrating and analyzing spatial information from different sources or disciplines. It helps to integrate, analyze and represent spatial information and database of any resource, which could be easily used for planning of resource development, environmental protection and scientific researches and investigations. Geographical Information Systems (GIS) have been used for a variety of groundwater studies. Groundwater level change maps are useful in determining areas of greatest changes in storage in the regional systems. In this study, an attempt has been made to assess the long term groundwater behaviour of the state using GIS to visually and spatially analyze water level data obtained from the state and central agencies. The data was analysed for 0–3 m, 3–10 m, 10–20 m and beyond 20 m. The study revealed that per cent area with water table depth > 10 m was 20% in 1998 and has increased to 58% by 2006 which is critical limit for shifting from centrifugal pump to submersible pump.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2481
Author(s):  
Elsayed M. Ramadan ◽  
Heba F. Abdelwahab ◽  
Zuzana Vranayova ◽  
Martina Zelenakova ◽  
Abdelazim M. Negm

Water conflicts in transboundary watersheds are significantly exacerbated by insufficient freshwater sources and high water demands. Due to its increasing population and various development projects, as well as current and potential water shortages, Egypt is one of the most populated and impacted countries in Africa and the Middle East in terms of water scarcity. With good future planning, modeling will help to solve water scarcity problems in the Ismailia canal, which is one of the most significant branches of the Nile River. Many previous studies of the Nile river basin depended on quality modeling and hydro-economic models which had policy or system control constraints. To overcome this deficit position and number, the East Nile Delta area was investigated using LINDO (linear interactive, and discrete optimizer) software; a mathematical model with physical constraints (mass balances); and ArcGIS software for canals and water demands from the agriculture sector, which is expected to face a water shortage. Using the total capital (Ismailia canal, groundwater, and water reuse) and total demand for water from different industries, the software measures the shortage area and redistributes the water according to demand node preferences (irrigation, domestic, and industrial water demands). At the irrigation network’s end, a water deficit of 789.81 MCM/year was estimated at Al-Salhiya, Ismailia, El Qantara West, Fayed, and Port Said. The model was then run through three scenarios: (1) the Ismailia Canal Lining’s effect, (2) surface water’s impact, and (3) groundwater’s impact. Water scarcity was proportional to lining four sections at a length of 61.0 km, which is considered to be optimal—based on the simulation which predicts that the Ismailia canal head flow will rise by 15%, according to scenarios—and the most effective way to reduce water scarcity in the face of climate change and limited resources as a result of the increasing population and built-in industrial projects in Egypt.


2017 ◽  
Vol 20 (2) ◽  
pp. 393-409
Author(s):  
Xueping Gao ◽  
Yinzhu Liu ◽  
Bowen Sun

Abstract In recent years, the lower reaches of the Beiyun River have suffered from growing water resource shortages due to the reduction of upstream water resource and drying up of the stream channel. More reasonable and scientifically based water allocation plans should be developed and implemented; however, uncertainties exist regarding the determination of water supply availability and spillage of extra water. To assess and manage regional water shortage, the combined effects of multiple water supply sources as well as the joint probability of typical events should be considered. The joint probability of water supply, considering upstream and local water supplies, was estimated through the copula functions. A multi-objective optimization model was then developed and solved by improved genetic algorithms to plan water resources allocation within a multi-source environment containing multiple competitive users. The framework is demonstrated, and represents a range of different water supply scenarios in terms of different probabilities of occurrence and constraint violations. The results showed that water allocation was greatly influenced by uncertainties, especially in upstream-local water supply. In addition, violating water-allocation constraint posed an extra uncertainty. This study facilitates the proposition of adaption allocation plans for uncertain environments, aiming to balance the shortage, economy, and reliability.


2019 ◽  
Vol 68 (8) ◽  
pp. 803-815 ◽  
Author(s):  
Zhihao Gong ◽  
Xiaohong Jiang ◽  
Jilin Cheng ◽  
Yi Gong ◽  
Xing Chen ◽  
...  

Abstract Double-reservoir-and-double-pumping-station systems are commonly used for irrigation water supply in hilly regions of southern China. An optimization model for this water supply system is proposed to minimize water shortage. The model features few coupling constraints, including available water in the system and pumping volume limited by regional water rights. Dynamic programming was adopted to solve the subsystem and aggregation models. The results with the model and that with the standard operation policy were compared; the total water shortage was reduced by 87.7%, total water replenishment from outside was reduced by 2.2%, and total water spill was reduced by 60.6% for a system in Nanjing, China. The method may provide a reference for optimal operation of water supply systems comprising reservoirs and pumping stations.


Water Policy ◽  
2003 ◽  
Vol 5 (3) ◽  
pp. 213-236 ◽  
Author(s):  
J. C. Luijten ◽  
E. B. Knapp ◽  
S. I. Sanz ◽  
J. W. Jones

Water security for those living in poverty is a concern for a broad range of policy makers. Identifying appropriate policy options, however, means coping with complexity and uncertainty inherent in natural and human systems. This paper demonstrates how geographical information systems and simulation modeling can facilitate scenario analysis of water availability and water security. The result is policy development with a strong human context that can empower stakeholders in water resources negotiations and the design of a science-based, community-supported water resources management plans. We applied these tools to two hillside watersheds in Honduras and Colombia to generate basic information about the “state of water resources”, and how they may change over space and time, for the present situation and under alternatives futures. Stakeholder participation in creating and analyzing scenarios is a critical part of the overall policy development methodological framework, so that what might otherwise be only lines on a graph is put into more concrete human terms. The analyses showed that, among others, stream water availability and the location of streams strongly vary throughout the year and over space; that different parts of the watersheds do not equally contribute to stream water; that inequalities exist in household accessibility to streams; and that dams could help supply sufficient irrigation water under alternative development scenarios without endangering water supply to downstream communities. These results are helpful for better understanding landscape processes at a watershed scale, for identifying desired future conditions and negotiating tradeoffs that are required to reach them, and for supporting water policy development.


2008 ◽  
Vol 3 (2) ◽  
Author(s):  
A. A. R. Arar

Jordan is situated in an arid to semi- arid zone with low and unpredictable rainfall. The country has an exceptionally low per capita water supply at less them 200 cubic meters per annum; one of the lowest on record world wide. This situation is exacerbated by increasing demand for water resulting from rapid growth in population due in part to the arrival of refugees and displaced persons, increased urbanization. improved standard of living and the continuing demands for irrigation. The gap between total demand and water supply is estimated by the Ministry of Water and Irrigation (MWI) at about 336 MCM in 2005 and this to increase to about 434 MCM in 2020. To minimize the negative impact of this shortage one of the country water strategy is to increase the water supply through maximizing the production of treated wastewater and its use for irrigation / industry and other suitable uses in order to protect the environment and to save fresh water for drinking purposes. At present 90% of the population are served by piped water and 65% by sewerage network with 22 treatment plants producing the equivalent to 10% of the total water resources. This will increase to reach, in 2020, about 18.6% of the total water resources. To ensure the implementation of the reuse projects successfully the country has created the Water Use and Environment Unit supported by the necessary legislative and institutional frame work and human resources development programme and by the establishment of the high level National Water Reuse Co-ordinating Committee, representing all those Concerned in the government agencies and the private sector.


Author(s):  
Mohamed S. SHOKR ◽  
Ahmed A. EL BAROUDY ◽  
Michael A. FULLEN ◽  
Talaat R. EL-BESHBESHY ◽  
Ramadan R. ALI ◽  
...  

Areas contaminated by heavy metals were identified in the El-Gharbia Governorate (District) of Egypt. Identification used remote sensing and Geographical Information Systems (GIS) as the main research tools. Digital Elevation Models (DEM), Landsat 8 and contour maps were used to map physiographic units. Nine soil profiles were sampled in different physiographic units in the study area. Geochemical analysis of the 33 soil samples was conducted using X-ray fluorescence spectrometry (XRF). Vanadium (V), nickel (Ni), chromium (Cr), copper (Cu) and zinc (Zn) concentrations were measured. V, Ni and Cr concentrations exceeded recommended safety values in all horizons of the soil profiles, while Cu had a variable distribution. Zn concentrations slightly exceeded recommended concentration limits. Concentrations were mapped in each physiographic unit using the inverse distance weighted (IDW) function of Arc-GIS 10.1 software. Pollution levels were closely associated with industry and urban areas.


2015 ◽  
Vol 5 (3) ◽  
pp. 407-418 ◽  
Author(s):  
Rong Chen ◽  
Xiaochang Wang ◽  
Yanzheng Liu

A water reuse system was formulated for the Xi'an International Metropolitan Urban Planning Project, with the aim of mitigating water stress in the central city of Xi'an, China in 2020. The main reuse purposes of the reclaimed water were agriculture, industry, municipal, ecological, and indoor uses. A wastewater reuse potential capacity of 427.2 × 106 m3/yr was deduced by analyzing the water demand for the different reuse purposes. This reuse capacity makes significant contribution to increasing the total urban water supply capacity and mitigating the water shortage problems imposed by the process of urbanization. A supply scheme for the reclaimed water was configured, which comprised the reclaimed water sources, water supply service areas, and the main reuse purposes. As a result, a wastewater treatment plants (WWTPs)-centered reclaimed water supply system was formed, and the main reuse purposes of the 15 WWTPs and their service districts were defined. Through an economic analysis, the feasibility and benefits of the water reuse system were ascertained. Overall, this study provided the theoretical basis and implementation strategies for a system configuration of water reuse in Xi'an City and also contributed to solving the water-deficiency problems associated with the rapidly developing urban areas in China.


2011 ◽  
Vol 90-93 ◽  
pp. 1359-1364
Author(s):  
Ju Ping Zhang ◽  
Wei Jiang Zhang ◽  
De Quan Wang

With the expansion of Ningdong Energy and Chemical Industry Base at Lingwu, Ningxia, water shortage is becoming increasingly serious and then has become one of the main factors in restricting the development of society and economy in the region. In the paper, through a systematic analysis of the re-use ways of the sewage as well as the water-saving potential for agricultural purposes, it is suggested that water right trading is the solution when part of the surplus can be used for industrial purposes in the Base, thereby leading to a more reliable way of sustainable water supply and a sustainable and steady economic growth in the region.


Sign in / Sign up

Export Citation Format

Share Document