scholarly journals Automatic Detection of Dominant Crop Types in Poland Based on Satellite Images

2020 ◽  
Vol 55 (4) ◽  
pp. 185-208
Author(s):  
Joanna Pluto-Kossakowska ◽  
Magdalena Pilarska ◽  
Paulina Bartkowiak

AbstractThe assumption of the European Union Common Agricultural Policy is to maintain good agricultural practices for sustainability in the environment. A number of requirements are imposed on farmers, including the maintenance of permanent grassland, fallow land or crop diversification. To meet these requirements, the European Union guarantees subsidies, but at the same time fields must be monitored focusing on crop identification. The limitation of field inspection and substituting it with crop recognition using satellite images could increase the effectiveness of this procedure. The application of satellite imagery in automatic detection and identification of dominant crops over a large area seems to be technically and economically sound. The paper discusses the concept and the results of automatic classification based on a Random Forests classifier performed on multitemporal images of Sentinel-2 and Landsat-8. A test site was established in a complex agricultural structure with long and narrow parcels in the south-eastern part of Poland. Time-series images acquired during the growing season 2016 were used for multispectral classification in different configurations: for Sentinel-2 and Landsat-8 separately and for both sensors integrated. Different Random Forests approaches and post-processing methods were examined based on independent data from farmers’ declarations records, reaching the best accuracy of over 90% for crops like winter or spring cereals. Overall accuracy of the classification ranged from 72% to 91% depending on the classification variant. The elaborated scheme is novel in the context of Polish complex agricultural structure and smallholders.

2019 ◽  
Vol 11 (19) ◽  
pp. 2304 ◽  
Author(s):  
Hanna Huryna ◽  
Yafit Cohen ◽  
Arnon Karnieli ◽  
Natalya Panov ◽  
William P. Kustas ◽  
...  

A spatially distributed land surface temperature is important for many studies. The recent launch of the Sentinel satellite programs paves the way for an abundance of opportunities for both large area and long-term investigations. However, the spatial resolution of Sentinel-3 thermal images is not suitable for monitoring small fragmented fields. Thermal sharpening is one of the primary methods used to obtain thermal images at finer spatial resolution at a daily revisit time. In the current study, the utility of the TsHARP method to sharpen the low resolution of Sentinel-3 thermal data was examined using Sentinel-2 visible-near infrared imagery. Compared to Landsat 8 fine thermal images, the sharpening resulted in mean absolute errors of ~1 °C, with errors increasing as the difference between the native and the target resolutions increases. Part of the error is attributed to the discrepancy between the thermal images acquired by the two platforms. Further research is due to test additional sites and conditions, and potentially additional sharpening methods, applied to the Sentinel platforms.


2020 ◽  
Author(s):  
Bahadir Kurnaz ◽  
Caglar Bayik ◽  
Saygin Abdikan

Abstract Background: Forests have an extremely important place in the ecosystem in terms of ensuring social and environmental balance. The biggest danger for forests that have this importance is forest fires due to various reasons. It is extremely important to estimate the formation and behavior characteristics of fires in terms of combating forest fires. Using the satellite images obtained with the developing technology for this purpose provides great convenience in the detection of the fire areas and the severity of the fire affected. In this study, forest fire that occurred in the Zeytinköy region of Muğla province was investigated using remotely sensed images. According to the reference data provided by the General Directorate of Forestry (GDF), 425 hectares of area was destroyed by fire. In this study, it is aimed to extract burn scar by applying seven vegetation indexes on Sentinel-2 and Landsat-8 satellite images. Additionally, forest fire areas have been determined with the object-based classification technique. Results: As a result of the study, when the obtained results are compared with the values obtained from GDF, it is determined that object based analysis of Sentinel-2 provided the highest accuracy with 98.36% overall accuracy and 0.976 kappa statistics. Comparing the results of spectral indices of Sentinel-2 and Landsat-8, Sentinel-2 resulted better results in all indices. Among the indices RdNBR and dNDVI obtained better results than other indices with Sentinel-2 and Landsat-8, respectively. Conclusions: In general, it has been determined that Sentinel-2 data is more suitable than Landsat-8 satellite images for determining Turkish red pine forest fired areas. Red and near infrared based images can be used for rapid mapping of fired areas. The results also indicated that the indices provided by multi-temporal Sentinel-2 data can assist forest management for rapid monitoring of fire scars and also for evolution of reforestation after fire.


2009 ◽  
Vol 3 (3-4) ◽  
pp. 37-39
Author(s):  
Árpád Ferencz ◽  
Rita Kalmár

Agriculture has been and probably will be a significant branch in the south part of the Great Plain in the future as well. Besides the mass products and in many cases instead of them when forming the agricultural structure, this region has to pay more attention to the branches that were important in the past. Hungarian experts who are famous in foreign countries as well deal with these branches and they provide excellent products. The rules referring to these products are more liberal in the market places of the European Union and their development is not controlled by strict quota systems. In the south part of the Great Hungarian Plain a lot of unique products of excellent quality are produced. Here in this essay we would like to find the answer to the question how the two significant products of the southern part of the Great Hungarian Plain can provide the families with the income that they can live on.We aim at the economical examination of the cucumber grown in Méhkerék and asparagus of Homok. To do this we will apply the so called Standard Gross Margin. The agriculture of the states of the European Union is measured with the help of this method. It can also help us in the future to decide whether the different farms belonging to families are economically viable in Hungary.  


2021 ◽  
Vol 13 (16) ◽  
pp. 3319
Author(s):  
Nan Ma ◽  
Lin Sun ◽  
Chenghu Zhou ◽  
Yawen He

Automatic cloud detection in remote sensing images is of great significance. Deep-learning-based methods can achieve cloud detection with high accuracy; however, network training heavily relies on a large number of labels. Manually labelling pixel-wise level cloud and non-cloud annotations for many remote sensing images is laborious and requires expert-level knowledge. Different types of satellite images cannot share a set of training data, due to the difference in spectral range and spatial resolution between them. Hence, labelled samples in each upcoming satellite image are required to train a new deep-learning-based model. In order to overcome such a limitation, a novel cloud detection algorithm based on a spectral library and convolutional neural network (CD-SLCNN) was proposed in this paper. In this method, the residual learning and one-dimensional CNN (Res-1D-CNN) was used to accurately capture the spectral information of the pixels based on the prior spectral library, effectively preventing errors due to the uncertainties in thin clouds, broken clouds, and clear-sky pixels during remote sensing interpretation. Benefiting from data simulation, the method is suitable for the cloud detection of different types of multispectral data. A total of 62 Landsat-8 Operational Land Imagers (OLI), 25 Moderate Resolution Imaging Spectroradiometers (MODIS), and 20 Sentinel-2 satellite images acquired at different times and over different types of underlying surfaces, such as a high vegetation coverage, urban area, bare soil, water, and mountains, were used for cloud detection validation and quantitative analysis, and the cloud detection results were compared with the results from the function of the mask, MODIS cloud mask, support vector machine, and random forest. The comparison revealed that the CD-SLCNN method achieved the best performance, with a higher overall accuracy (95.6%, 95.36%, 94.27%) and mean intersection over union (77.82%, 77.94%, 77.23%) on the Landsat-8 OLI, MODIS, and Sentinel-2 data, respectively. The CD-SLCNN algorithm produced consistent results with a more accurate cloud contour on thick, thin, and broken clouds over a diverse underlying surface, and had a stable performance regarding bright surfaces, such as buildings, ice, and snow.


Author(s):  
Nicolas Champion

Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled <i>seeds</i> if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled <i>shadows</i> if the difference of reflectance (in the NIR channel) with the <i>synthetic</i> ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled <i>clouds</i> during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pléiades-HR images and our first experiments show the feasibility to automate the detection of shadows and clouds in satellite image sequences.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2454
Author(s):  
Palaiologos Palaiologou ◽  
Maureen Essen ◽  
John Hogland ◽  
Kostas Kalabokidis

In this study, we share an approach to locate and map forest management units with high accuracy and with relatively rapid turnaround. Our study area consists of private, state, and federal land holdings that cover four counties in North-Central Washington, USA (Kittitas, Okanogan, Chelan and Douglas). This area has a rich history of landscape change caused by frequent wildfires, insect attacks, disease outbreaks, and forest management practices, which is only partially documented across ownerships in an inconsistent fashion. To consistently quantify forest management activities for the entire study area, we leveraged Sentinel-2 satellite imagery, LANDFIRE existing vegetation types and disturbances, monitoring trends in burn severity fire perimeters, and Landsat 8 Burned Area products. Within our methodology, Sentinel-2 images were collected and transformed to orthogonal land cover change difference and ratio metrics using principal component analyses. In addition, the Normalized Difference Vegetation Index and the Relativized Burn Ratio index were estimated. These variables were used as predictors in Random Forests machine learning classification models. Known locations of forest treatment units were used to create samples to train the Random Forests models to estimate where changes in forest structure occurred between the years of 2016 and 2019. We visually inspected each derived polygon to manually assign one treatment class, either clearcut or thinning. Landsat 8 Burned Area products were used to derive prescribed fire units for the same period. The bulk of analyses were performed using the RMRS Raster Utility toolbar that facilitated spatial, statistical, and machine learning tools, while significantly reducing the required processing time and storage space associated with analyzing these large datasets. The results were combined with existing LANDFIRE vegetation disturbance and forest treatment data to create a 21-year dataset (1999–2019) for the study area.


2020 ◽  
Vol 956 (2) ◽  
pp. 40-49
Author(s):  
Le Hung Trinh ◽  
Dinh Sinh Mai ◽  
V.R. Zablotskii

In recent years, land cover changes very quickly in urban areas due to the impact of population growth and socio-economic development. The authors present the method of land cover/land use classification based on the combination of Sentinel 2 and Landsat 8 multi-resolution satellite images. A middle infrared band (band 11), a near infrared (band 8) of Sentinel 2 image and a thermal infrared one (band 10) of Landsat 8 image were used to calculate EBBI (Enhanced Built-up and Barreness Index). The EBBI index and Sentinel 2 spectral bands with spatial resolution 10 m (band 2, 3, 4, 8) were used to classify the land cover. The obtained results showed that, the method of land cover classification based on combination of Sentinel 2 and Landsat 8 satellite images improves the overall accuracy by about 5 % compared with the one using only Sentinel 2 data. The results obtained at the study can be used for the management, assessment and monitoring the status and dynamics of land cover in urban areas.


2019 ◽  
Vol 9 (10) ◽  
pp. 2016 ◽  
Author(s):  
Bassim Mohammed Hashim ◽  
Maitham Abdullah Sultan ◽  
Mazin Najem Attyia ◽  
Ali A. Al Maliki ◽  
Nadhir Al-Ansari

Marshes represent a unique ecosystem covering a large area of southern Iraq. In a major environmental disaster, the marshes of Iraq were drained, especially during the 1990s. Since then, droughts and the decrease in water imports from the Tigris and Euphrates rivers from Turkey and Iran have prevented them from regaining their former extent. The aim of this research is to extract the values of the normalized difference vegetation index (NDVI) for the period 1977–2017 from Landsat 2 MSS (multispectral scanner), Landsat 8 OLI (operational land imager) and Sentinel 2 MSI (multi-spectral imaging mission) satellite images and use supervised classification to quantify land and water cover change. The results from the two satellites (Landsat 2 and Landsat 8) are compared with Sentinel 2 to determine the best tool for detecting changes in land and water cover. We also assess the potential impacts of climate change through the study of the annual average maximum temperature and precipitation in different areas in the marshes for the period 1981–2016. The NDVI analysis and image classification showed the degradation of vegetation and water bodies in the marshes, as vast areas of natural vegetation and agricultural lands disappeared and were replaced with barren areas. The marshes were influenced by climatic change, including rising temperature and the diminishing amount of precipitation during 1981–2016.


Sign in / Sign up

Export Citation Format

Share Document