scholarly journals Influence of Modified Cationic Starch in a Mixed Poly(Vinyl Alcohol)/Cationic Starch Solution on the Electrospinning Process and Web Structure

2020 ◽  
Vol 20 (1) ◽  
pp. 69-72
Author(s):  
Jurgita Šateikė ◽  
Rimvydas Milašius

AbstractNanofibers were electrospun from bicomponent poly(vinyl alcohol) (PVA) and modified cationic starch (CS) mixed solution PVA/CS with different mass ratios (75/25, 50/50 and 35/65) at a total concentration of 12 wt% for all polymer compositions. For comparison, pure PVA solution was used. Electrospinning technique Nanospider (Elmarco, Czech Republic) with a rotating electrode with tines was used to obtain nanofibrous web. The influence of prepared polymer solution compositions on the structure and morphology of nanofibers and webs were investigated. Analyzing the structure and morphology of the formed nanofiber webs, it was noticed that the fineness nanofibers were formed from the PVA/CS solution with a mass ratio of 50/50. This ratio of solution also lets us to obtain the nanofibrous web with less sticked nanofibers on spunbond. The increase in the CS ratio by more than 50/50 had a negative influence on the diameter of nanofibers and the structure of nanofibrous web.

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
I. Uslu ◽  
H. Daştan ◽  
A. Altaş ◽  
A. Yayli ◽  
O. Atakol ◽  
...  

Abstract In this study, poly(vinyl alcohol) were cross-linked with boron in varying concentrations and blend fibers were obtained with diameters ranging from 0.3 μ to 4.0 μm with the use of electrospinning process. The resulting product was characterized by SEM, DSC, and FT-IR techniques. There is no beading tendency in either boron doped or undoped fibers. When the amount of boric acid in PVA solutions was increased the conductivity of the polymer decreased. The data indicated the existence of boron oxide in the polymeric structure and the formation of B-O-C bond. SEM micrographs reveal that higher viscosity favors the formation of thicker fibers. Boron addition seems to disturb the easy detachment of the fibers from the tip of the Taylor Cone


2019 ◽  
Vol 819 ◽  
pp. 145-150
Author(s):  
Thapakorn Chareonying ◽  
Junnasir M. Sakilan ◽  
Theerasak Rojanarata ◽  
Prasopchai Patrojanasophon ◽  
Prasert Akkaramongkolporn ◽  
...  

Nanofibers have been widely used for tissue engineering. Using charged polymers for the preparation of nanofibers can be useful for the loading of substances or macromolecules. Dual charge nanofiber mats are expected to be able to immobilize both positively charged and negatively charged substances in one versatile nanofiber mat. The purpose of this study was to prepare and characterize dual-charge nanofibers generated from poly (vinyl alcohol) (PVA)/poly-(acrylic acid-co-maleic acid) (PAMA) and chitosan (CS)/PVA. The polymer solutions of PAMA/PVA (1:1.63 w/w) and CS/PVA (1:2.33 w/w) were electrospun to form the nanofibers using dual-jet electrospinning process. The obtained dual-charge nanofibers were thermally crosslinked by leaving the nanofibers in the oven at 110-130 °C for 0.5, 1, 3, 5 h. The appearance of the nanofiber mat was characterized by a scanning electron microscope (SEM), and the diameter of nanofibers were determined by an image analysis software (J-micro vision®). The percentage water insolubilization and FT-IR spectra were also determined. The dual-size nanofiber mats with smooth and bead-free fibers were obtained. The diameter of the PAMA/PVA and CS/PVA fibers was 574.54 ± 142.98 nm and 225.69 ± 41.92 nm, respectively. The desirable temperature and time for the crosslink of the dual-charge nanofiber mats was 130 °C for 1 h which could provide a high insolubilization with water capacity of 93.22 ± 2.23%.


2016 ◽  
Vol 32 (4) ◽  
pp. 411-428 ◽  
Author(s):  
Nor Hasrul Akhmal Ngadiman ◽  
Noordin Mohd Yusof ◽  
Ani Idris ◽  
Denni Kurniawan ◽  
Ehsan Fallahiarezoudar

The use of electrospinning has gained substantial interest in the development of tissue engineering scaffolds due to its ability to produce nanoscale fibers which can mimic the geometry of extracellular tissues. Besides geometry, mechanical property is one of the main elements to be considered when developing tissue engineering scaffolds. In this study, the electrospinning process parameter settings were varied in order to find the optimum setting which can produce electrospun nanofibrous mats with good mechanical properties. Maghemite (γ-Fe2O3) was mixed with poly(vinyl alcohol) and then electrospun to form nanofibers. The five input variable factors involved were nanoparticles content, voltage, flow rate, spinning distance, and rotating speed, while the response variable considered was Young’s modulus. The performance of electrospinning process was systematically screened and optimized using response surface methodology. This work truly demonstrated the sequential nature of designed experimentation. Additionally, the application of various designs of experiment techniques and concepts was also demonstrated. Results revealed that electrospun nanofibrous mats with maximum Young’s modulus (273.51 MPa) was obtained at optimum input settings: 9 v/v% nanoparticle content, 35 kV voltage, 2 mL/h volume flow rate, 8 cm spinning distance, and 3539 r/min of rotating speed. The model was verified successfully by performing confirmation experiments. The nanofibers characterization demonstrated that the nanoparticles were well dispersed inside the nanofibers, and it also showed that the presence of defects on the nanofibers can decrease their mechanical strength. The biocompatibility performance was also evaluated and it was proven that the presence of γ-Fe2O3 enhanced the cell viability and cell growth rate. The developed poly(vinyl alcohol)/γ-Fe2O3 electrospun nanofiber mat has a good potential for tissue engineering scaffolds.


2007 ◽  
Vol 106 (5) ◽  
pp. 3282-3289 ◽  
Author(s):  
Hyun Ju Lim ◽  
Sung Jun Lee ◽  
Han Jo Bae ◽  
Seok Kyun Noh ◽  
Yong Rok Lee ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (16) ◽  
pp. 9854-9861 ◽  
Author(s):  
Ming He ◽  
Buning Zhang ◽  
Yao Dou ◽  
Guoqiang Yin ◽  
Yingde Cui ◽  
...  

We have fabricated random and aligned feather keratin (FK)/PVA composite nanofibers through an electrospinning process. The morphology, molecular interactions, crystallization behavior, and tensile properties of the nanofibers were investigated.


2019 ◽  
Vol 20 (18) ◽  
pp. 4395 ◽  
Author(s):  
Yang ◽  
Zhang ◽  
Zhang

In this paper, nanofibrous membranes based on chitosan (CS), poly (vinyl alcohol) (PVA) and graphene oxide (GO) composites, loaded with antibiotic drugs, such as Ciprofloxacin (Cip) and Ciprofloxacin hydrochloride (CipHcl) were prepared via the electrospinning technique. The uniform and defect-free CS/PVA nanofibers were obtained and GO nanosheets, shaping spindle and spherical, were partially embedded into nanofibers. Besides, the antibiotic drugs were effectively loaded into the nanofibers and part of which were absorbed into GO nanosheets. Intriguingly, the release of the drug absorbed in GO nanosheets regulated the drug release profile trend, avoiding the “burst” release of drug at the release initial stage, and the addition of GO slightly improved the drug release ratio. Nanofibrous membranes showed the significantly enhanced antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis after the addition of antibiotic drug. Moreover, the drug-loaded nanofibrous membranes exhibited excellent cytocompatibility with Melanoma cells, indicative to the great potential potential for applications in wound dressing.


RSC Advances ◽  
2015 ◽  
Vol 5 (85) ◽  
pp. 69378-69387 ◽  
Author(s):  
Amandeep Jindal ◽  
Suddhasatwa Basu ◽  
Aby C. P.

Dense, multi-layered poly(vinyl) alcohol nanofibers dispersed with catalytically active carbon nitride nanoparticles were synthesized using an electrospinning process.


2022 ◽  
Author(s):  
Saeed Hejabri kandeh ◽  
Shima Amini ◽  
Homeira Ebrahimzadeh

Herein, a novel composite of poly(vinyl alcohol) (PVA)/citric acid (CA)/ chitosan (CS)/ aloe vera gel (AV) was fabricated via the electrospinning technique followed by a thermal treatment. The resultant composite...


Sign in / Sign up

Export Citation Format

Share Document