dual inductor-fed boost converter with an auxiliary transformer and voltage doubler

2013 ◽  
Vol 61 (4) ◽  
pp. 787-791
Author(s):  
J. Dawidziuk

Abstract This paper presents a dual inductor-fed boost converter with an auxiliary transformer and voltage doubler for sustainable energy power converters. The new topology integrates a two-phase boost converter and a dual inductor-fed boost converter. The energy stored and transferred by both inductors can attain a wide input-voltage and load range which uses a constant switching frequency, by controlling the time duration of the simultaneous conduction of the two switches. Among other current-fed type boost converters the presented topology is attractive due to the high voltage conversion ratio, less stress on the components and less switch conduction loss. To verify the feasibility of this topology, the principles of operation, theoretical analysis, and experimental waveforms are presented for a 1 kW prototype.

Author(s):  
A. A. Bakar ◽  
A. Ponniran ◽  
T. Taufik

<span>This paper presents the simulation design of dc/dc interleaved boost converter with zero-voltage switching (ZVS). By employin the interleaved structure, the input current stresses to switching devices were reduced and this signified to a switching conduction loss reduction. All the parameters had been calculated theoretically. The proposed converter circuit was simulated by using MATLAB/Simulink and PSpice software programmes. The converter circuit model, with specifications of output power of 200 W, input voltage range from 10~60 V, and operates at 100 kHz switching frequency was simulated to validate the designed parameters. The results showed that the main switches of the model converter circuit achieved ZVS conditions during the interleaving operation. Consequently, the switching losses in the main switching devices were reduced. Thus, the proposed converter circuit model offers advantages of input current stress and switching loss reductions. Hence, based on the designed parameters and results, the converter model can be extended for hardware implementation.</span>


Author(s):  
Getzial Anbu Mani ◽  
A. K. Parvathy

<p>Boost converters of high gain are used for photo voltaic systems to obtain high efficiency. These high gain Boost converters gives increased output voltage for a low input produces high outputs for low input voltage. The High gain boost converters have the following merits. Conduction losses input current ripple and stress across the switches is reduced while the efficiency is increases. The high gain of the converters with the above said merits is obtained by changing the duty cycle of switches accordingly .In this paper a boost converter working with interleaved concept along with a additional Nstage voltage Multiplier has been carried out by simulation using MATLAB/ simulink and the mathematical modeling of various parameters is also done.</p>


2020 ◽  
Vol 10 (4) ◽  
pp. 39
Author(s):  
Maziar Rastmanesh ◽  
Ezz El-Masry ◽  
Kamal El-Sankary

Photo-voltaic (PV) power harvest can have decent efficiency when dealing with high power. When operating with a DC–DC boost converter during the low-power harvest, its efficiency and output voltage are degraded due to excessive losses in the converter components. The objective of this paper is to present a systematic approach to designing an efficient low-power photo-voltaic harvesting topology with an improved efficiency and output voltage. The proposed topology uses a boost converter with and extra inductor in recycled and synchro-recycled techniques in continuous current mode (CCM). By exploiting the non-linearity of the PV cell, it reduces the power loss and using the current stored in the second inductor, it enhances the output voltage and output power simultaneously. Further, by utilizing the Metal Oxide Silicon Field Effect Transistor’s (MOSFET) body diode as a switch, it maintains a minimum hardware, and introduces a negligible impact on the reliability. The test results of the proposed boost converters show that it achieves a decent power and output voltage. Theoretical and experimental results of the proposed topologies with a tested prototype are presented along with a strategy to maximize power and voltage conversion efficiencies and output voltage.


Author(s):  
S.B Mohanty ◽  
K.M Ravi Eswar ◽  
D. Elangovan ◽  
G. Arun Kumar

In this paper, analysis and experimentation of a fourth order boost converter has been proposed for renewable energy source applications such as solar power. The output of proposed converter is fed to motor load of 220W. The main advantages of this converter are negligible current ripples at both source and load side and higher efficiency as compared to the conventional boost converter. The energy storage elements in circuit are designed and optimized using Bacterial Foraging Optimization Algorithm (BFOA) to solve the contradictory problems of steady state and dynamic performance of the system. The up-down glitch in control to output transfer function of system is reduced with the optimized values of energy storage elements in the proposed converter. Therefore dynamic response of system is analyzed with the designed values of inductor and capacitor. Closed loop control is introduced in the proposed system using proportional integral controller to maintain the output voltage constant when there is any load disturbance in the output side and wide variations in the input voltage. Simulation and hardware results of the proposed converter with input voltage of 60V and switching frequency of 100 kHz are presented.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2924
Author(s):  
Seok-Hyeong Ham ◽  
Hyung-Jin Choe

This paper proposes a miniature DC-DC boost converter to drive the display panel of a notebook computer. To reduce the size of the circuit, the converter was designed to operate at a switching frequency of 1 MHz. The power conversion efficiency improved using a passive snubber circuit that consisted of one inductor, two capacitors, and two diodes; it reduced the switching losses by lowering the voltage stress of the switch and increased the voltage gain using charge pumping operations. An experimental converter was fabricated at 2.5 cm × 1 cm size using small components, and tested at input voltage 5 V ≤ VIN ≤ 17.5 V and output current 30 mA ≤ IO ≤ 150 mA. Compared to existing boost converters, the proposed converter had ~7.8% higher power conversion efficiency over the entire range of VIN and IO, only ~50% as much voltage stress of the switch and diodes, and a much lower switch temperature TSW = 49.5 °C. These results indicate that the proposed converter is a strong candidate for driving the display panel of a notebook computer.


Author(s):  
Konstantin Bykov ◽  
Nadezhda Lazareva ◽  
Viktor Yarov

A comparison of two-phase and three-level boost converters for photovoltaic converters is given. The conclusion is made about the advantages of a three-level boost converter, and its model in the form of a transfer function is obtained from the acceleration curve.


2014 ◽  
Vol 3 (3) ◽  
pp. 101-121 ◽  
Author(s):  
S. Aiswariya ◽  
R. Dhanasekaran

This paper proposes an AC-DC converter with the application of active type soft switching techniques. Boost converter with active snubber is used to achieve power factor correction. Boost converter main switch uses Zero Voltage Transition switching for turn on and Zero Current Transition switching for turn off. The active snubber auxillary switch uses Zero Current Switching for both turn on and turn off. Since all the switches of the proposed circuit are soft switched, overall component stress has been greatly reduced and the output DC voltage is expected to have low ripples. A small amount of auxillary switch current is made to flow to the output side by the help of coupling inductor. The proposed circuit is simulated using MATLAB Simulink. All the related waveforms are shown for the reference. The power factor is measured as 0.99 showing that the input current and input voltage is in phase with each other. The PFC circuit has very less number of components with smaller size and can be controlled easily at a wide line and load range.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1991 ◽  
Author(s):  
Krzysztof Górecki ◽  
Kalina Detka

The paper presents the results of a computer simulation illustrating the influence of power losses in the core of an inductor based on the characteristics of buck and boost converters. In the computations, the authors’ model of power losses in the core is used. Correctness of this model is verified experimentally for three different magnetic materials. Computations are performed with the use of this model and the Excel software for inductors including cores made of ferrite, powdered iron, and nanocrystalline material in a wide range of load resistance, as well as input voltage of both the considered converters operating at different values of switching frequency. The obtained computation results show that power losses in the inductor core and watt-hour efficiency of converters strongly depend on the material used to make this core, in addition to the input voltage and parameters of the control signal and load resistance of the considered converters. The obtained results of watt-hour efficiency of the considered direct current (DC)–DC converters show that it changes up to 30 times in the considered ranges of the mentioned factors. In turn, in the same operating conditions, values of power losses in the considered cores change from a fraction of a watt to tens of watts. The paper also considers the issue of which material should be used to construct the inductor core in order to obtain the highest value of watt-hour efficiency at selected operation conditions of the considered converters.


2016 ◽  
Vol 26 (04) ◽  
pp. 1750063 ◽  
Author(s):  
Lianxi Liu ◽  
Yiyang Zhou ◽  
Junchao Mu ◽  
Xufeng Liao ◽  
Zhangming Zhu ◽  
...  

A novel near-threshold voltage startup monolithic boost converter is presented in this paper using an adaptive sleeping time control (ASTC) scheme for low-power applications. The proposed ASTC scheme can promote the power efficiency of the current-mode boost converter under light load by automatically adjusting the sleep time of the converter, and the converter's quiescent current drops down to 4[Formula: see text][Formula: see text]A during the sleeping period. In addition, a new soft-start method is introduced to make the boost converter start up with a near-threshold input voltage. The proposed boost converter was fabricated in a standard 0.18[Formula: see text][Formula: see text]m CMOS process and occupies a small chip area of 0.50[Formula: see text][Formula: see text][Formula: see text]mm. Experimental results show that the boost converter achieves the minimum 0.5-V startup voltage when the output voltage is set to 1.8[Formula: see text]V. After startup, the input voltage range can be expanded from 0.3[Formula: see text]V to 1.5[Formula: see text]V with a switching frequency of 1[Formula: see text]MHz. In addition, a peak efficiency of 94% and a minimum efficiency of 81% are measured at the 1.5-V input voltage as the load current ranges from 0.1[Formula: see text]mA to 100[Formula: see text]mA.


Sign in / Sign up

Export Citation Format

Share Document