Modelling and simulation of a system for verticalization and aiding the motion of individuals suffering from paresis of the lower limbs

2013 ◽  
Vol 61 (4) ◽  
pp. 919-928 ◽  
Author(s):  
K. Bagiński ◽  
D. Jasińska-Choromańska ◽  
J. Wierciak

Abstract There has been designed a device for verticalization and aiding the gait of individuals suffering from paresis of the lower limbs. It can be counted in the category of so-called “wearable robots”, whose task is to replace or aid human limbs. Dependently on the function realized, these robots are classified into one of the following three groups: a) exoskeletons - strengthening the force of human muscles beyond their natural abilities, b) orthotic robots - restoring lost or weakened functions of human limbs, c) prosthetic robots - replacing an amputated limb. A significant feature of the device that has been designed is the fact that it has not to replace human limbs, but only restore them to their lost motor capabilities. Thus, according to the presented classification, it is an orthotic robot. Unlike in the case of the existing systems for verticalization, the gait is to be realized in a way that is automatic to the highest possible extent, keeping the user involved as little as possible, and the device is to imitate the natural movements of man with the highest fidelity. Within the works on the system for verticalization and aiding the motion, a simulation model of the device was created. It includes a structure of the robot, a model of the actuators and a model of the human body that constitutes the load for the driving units. Then, simulation studies were carried out, including evaluation of the power demand of the device as well as the influence of the gait rate and of the length of the steps on the operation of the system.

2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


2021 ◽  
Vol 13 (11) ◽  
pp. 5795
Author(s):  
Sławomir Biruk ◽  
Łukasz Rzepecki

Reducing the duration of construction works requires additional organizational measures, such as selecting construction methods that assure a shorter realization time, engaging additional resources, working overtime, or allowing construction works to be performed simultaneously in the same working units. The simultaneous work of crews may affect the quality of works and the efficiency of construction processes. This article presents a simulation model aimed at assessing the impact of the overlap period on the extension of the working time of the crews and the reduction of a repetitive project’s duration in random conditions. The purpose of simulation studies is to provide construction managers with guidelines when deciding on the dates of starting the sequential technological process lines realized by specialized working crews, for sustainable scheduling and organization of construction projects.


Robotica ◽  
2005 ◽  
Vol 23 (5) ◽  
pp. 595-606 ◽  
Author(s):  
Manuel F. Silva ◽  
J. A. Tenreiro Machado ◽  
António M. Lopes

This paper describes a simulation model for a multi-legged locomotion system with joints at the legs having viscous friction, flexibility and backlash. For that objective the robot prescribed motion is characterized in terms of several locomotion variables. Moreover, the robot body is divided into several segments in order to emulate the behaviour of an animal spine. The foot-ground interaction is modelled through a non-linear spring-dashpot system whose parameters are extracted from the studies on soil mechanics. To conclude, the performance of the developed simulation model is evaluated through a set of experiments while the robot leg joints are controlled using fractional order algorithms.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207605 ◽  
Author(s):  
Ruben Cloete ◽  
Erika Kapp ◽  
Jacques Joubert ◽  
Alan Christoffels ◽  
Sarel F. Malan

Author(s):  
Régis Mollard ◽  
Pierre Yves Hennion ◽  
Alex Coblentz

The survey realized in 1992 on a military population allowed to collect anthropometric data on 688 males and 328 females. Among 73 measurements and 3 index, 26 of them have been retained for the comparison with previous surveys. Generally used for dimensioning human body models these data represent somatic measurements of reference, as weight and stature and segmentary measurements of trunk and limbs. A comparison with previous data, collected on a equivalent military population in 1973, confirms the modifications along the time are so significant that they can be considered as a phenomenon of morphological evolution. Likewise, the modification of the academic levels, average age and socio-cultural structures in the populations are combined to increase the anthropometric variability. It appears the military population presents a morphological modification with an overall increase in weight, stature and correlated dimensions. Otherwise, a light decrease of the cormic index indicates that the morphological transformation influences on the body proportions, with an increase more notable for the lower limbs compared to the trunk. The collected anthropometric information allow to update the Individual Database of ERGODATA from which ergonomie recommendations and statistical and morphological models of the human body can be proposed.


2021 ◽  
Vol 2 (3/S) ◽  
pp. 356-360
Author(s):  
Javli Kudratov

The most important parts of the human body are divided into the head, neck, shoulders, chest area of   the body, waist and upper and lower limbs.  The structure of the human body is manifested in many different personalities, in many complex and unusual combinations. Drawing a human figure is the student's perspective, proportion, plastic anatomy, to have a deeper knowledge of the forms of movement and the principle of the main characteristic points and reference lines  the pin requires more reliable, more accurate application.


Author(s):  
Henk Elffers ◽  
Pieter Van Baal

This chapter considers whether it is worthwhile and useful to enrich agent based spatial simulation studies in criminology with a real geographical background, such as the map of a real city? Using modern GIS tools, such an enterprise is in principle quite feasible, but we argue that in many cases this course is not only not producing more interesting results, but in fact may well be detrimental for the real reason of doing criminal simulation studies, which is understanding the underlying rules. The argument is first outlined in general, and then illustrated in the context of a given example of the ThESE perceptual deterrence simulation model (Van Baal, 2004), a model that actually is using a simple checkerboard as its spatial backcloth.


Author(s):  
Longhan Xie ◽  
Xiaodong Li

During walking, human lower limbs accelerate and decelerate alternately, during which period the human body does positive and negative work, respectively. Muscles provide power to all motions and cost metabolic energy both in accelerating and decelerating the lower limbs. In this work, the lower-limb biomechanics of walking was analyzed and it revealed that if the negative work performed during deceleration can be harnessed using some assisting device to then assist the acceleration movement of the lower limb, the total metabolic cost of the human body during walking can be reduced. A flexible lower-limb exoskeleton was then proposed; it is worn in parallel to the lower limbs to assist human walking without consuming external power. The flexible exoskeleton consists of elastic and damping components that are similar to physiological structure of a human lower limb. When worn on the lower limb, the exoskeleton can partly replace the function of the lower limb muscles and scavenge kinetic energy during lower limb deceleration to assist the acceleration movement. Besides, the generator in the exoskeleton, serving as a damping component, can harvest kinetic energy to produce electricity. A prototype of the flexible exoskeleton was developed, and experiments were carried out to validate the analysis. The experiments showed that the exoskeleton could reduce the metabolic cost by 3.12% at the walking speed of 4.5 km/h.


Sign in / Sign up

Export Citation Format

Share Document