scholarly journals A combination of biochar and regulated deficit irrigation improves tomato fruit quality: A comprehensive quality analysis

2019 ◽  
Vol 31 (1) ◽  
pp. 181-193 ◽  
Author(s):  
Larona Keabetswe ◽  
Guang Cheng Shao ◽  
Jintao Cui ◽  
Jia Lu ◽  
Tebogo Stimela

AbstractQuality of fresh produce is the most critical issue in the economics of a vegetable enterprise. In order to investigate the effect of biochar amendment and deficit irrigation on tomato fruit quality, experimental research was conducted under a rain shelter in southern China during the 2017 and 2018 growing seasons. The experiment consisted of five treatments. Crops were irrigated to 100% of field water capacity at all growth stages as treatments T1 and T2. The other treatments received 30% less irrigation water than T2 when its soil water content reached 70% of field capacity, and were designated as treatments T3, T4 and T5, applied at the vegetative (stage I), flowering and fruit development (stage II), and fruit ripening (stage III) stages, respectively. Treatment T1 included no biochar, while the other treatments included 10% biochar by weight. The results showed that the total soluble solids (TSS) content, sugar-to-acid ratio (SAR), vitamin C (VC) content, and colour index (CI) increased in the deficit irrigation treatments depending on the phenological stage, the fruit ripening stage in particular. Meanwhile, single fruit weight was significantly (p < 0.05) reduced by water deficit at stages II and III, subsequently affecting the total fruit yield. Biochar improved soil moisture conservation and had a positive effect on fruit quality as evidenced by better single quality attributes (p < 0.05) of T2 over T1. The GRA and TOPSIS appraisal methods were used to conduct the comprehensive quality analysis. Eventually, treatment T5 ranked the best in both seasons, and this was also confirmed by the combinational evaluation method.

Author(s):  
Dimitrios Kasampalis ◽  
Pavlos Tsouvaltzis ◽  
Anastasios Siomos

The effect of two growing seasons (spring and fall), two harvest periods (early and late), four fruit ripening stages at harvest (S1, S2, S3 and S4, according to OECD gauge) and postharvest storage (0 or 16 days at 12 °C) on quality characteristics of tomato fruits was determined in order to investigate its one’s relative contribution. According to the results, all factors significantly affected most of the quality components, but not at the same magnitude. Ripening stage at harvest had the most significant effect in firmness, pH, and in the ratio soluble solids to TA, the growing season only in dry matter content, the storage on pigments’ content (chlorophyll, total carotenoids, lycopene and β-carotene) while the harvesting period was not the main factor in any of the quality traits determined. In conclusion, either the ripening stage at harvest or the time elapsed until consumption had the most significant effect on tomato fruit quality, but both could not be assessed at the time of consumption.


2019 ◽  
Vol 10 ◽  
Author(s):  
Stefan Petrasch ◽  
Christian J. Silva ◽  
Saskia D. Mesquida-Pesci ◽  
Karina Gallegos ◽  
Casper van den Abeele ◽  
...  

2002 ◽  
Vol 20 (4) ◽  
pp. 659-663 ◽  
Author(s):  
Celso Luiz Moretti ◽  
Alessandra L. Araújo ◽  
Waldir Aparecido Marouelli ◽  
Washington Luiz C. Silva

Tomato (Lycopersicon esculentum Mill.) fruits, cv. Santa Clara, were harvested at the breaker stage from commercial fields in Brazlândia, Brazil, to investigate the ability of 1-methylcyclopropene (1-MCP) to retard tomato fruit ripening. Fruit without external blemishes were graded for size (diameter = 80±5 mm) and mass (m = 130±10 g), placed inside hermetically sealed boxes, and 1-MCP was applied for 12 hours (T = 22±1°C; RH = 80-85%) at four different concentrations: 0 (control), 250, 500 and 1000 mL.L-1. Fruits were held at ambient conditions (T = 23±2°C; RH 80-85%) for 2 days and then stored inside a cold room (T = 20±1°C; RH = 85-95%). Every 3 days, during a 15-day period, fruits were analyzed for firmness, total soluble solids, titratable acidity, external color, and total carotenoids. Firmness of fruit treated with 1000 mL.L-1 was about 88% higher than control fruits after 17 days. The a*/b* ratio, an indicator of skin color, for fruit treated with 1000 mL.L-1 of 1-MCP was 38% lower than control fruits at the end of the storage period. Treatments with higher concentrations of 1-MCP delayed total carotenoids synthesis and color development. Control fruits stored for 17 days had about 190% more total carotenoids than fruits treated with 1000 mL.L-1 of 1-MCP. Postharvest application of 1-MCP was an efficient method to delay tomato fruit ripening. As 1-MCP concentration increased, ripening was further delayed. Tomatoes treated with 250, 500, and 1000 mL.L-1 of 1-MCP were delayed by 8 to 11, 11 to 13 and 15 to 17 days, respectively.


2019 ◽  
Vol 71 (4) ◽  
pp. 1249-1264 ◽  
Author(s):  
Xuemin Hou ◽  
Wendong Zhang ◽  
Taisheng Du ◽  
Shaozhong Kang ◽  
William J Davies

Abstract Fruit is important for human health, and applying deficit irrigation in fruit production is a strategy to regulate fruit quality and support environmental sustainability. Responses of different fruit quality variables to deficit irrigation have been widely documented, and much progress has been made in understanding the mechanisms of these responses. We review the effects of water shortage on fruit water accumulation considering water transport from the parent plant into the fruit determined by hydraulic properties of the pathway (including xylem water transport and transmembrane water transport regulated by aquaporins) and the driving force for water movement. We discuss water relations and solute metabolism that affect the main fruit quality variables (e.g. size, flavour, nutrition, and firmness) at the cellular level under water shortage. We also summarize the most recent advances in the understanding of responses of the main fruit quality variables to water shortage, considering the effects of variety, the severity of water deficit imposed, and the developmental stage of the fruit. We finally identify knowledge gaps and suggest avenues for future research. This review provides new insights into the stress physiology of fleshy fruit, which will be beneficial for the sustainable production of high-quality fruit under deficit irrigation.


2020 ◽  
Vol 28 (1) ◽  
pp. 93-100
Author(s):  
Chenafi Azzeddine ◽  
Bachir Bey Mostapha ◽  
Chennafi Houria

AbstractThe impact of regulated drip-irrigation on productivity and fruit quality of tomato ‘Tofane’ has been studied under a warm dry desert climate in southern Algeria. Yield, fruit weight and size, water content and parameters of fruit quality – total soluble solids, phenolic compounds, carotenoids, vitamin C, pH and titratable acidity were determined. Two irrigation treatments were applied in 2012 and 2013: T1, optimal irrigation (100% evapotranspiration – ETc) during the whole growth period (growth stages I, II and III); T2, optimal irrigation during I and II stages, and regulated deficit irrigation (67% ETc) during stage III (from fruit set to full fruit maturity of first and second bunch). T1 treatment during the whole season showed the highest values of soil water potential (Ψsoil), between −0.02 MPa and −0.06 MPa, on depths of 0.3 and 0.6 m, respectively. During stage III, regulated deficit irrigation caused the lowest Ψsoil values, which were between −0.1 MPa and −0.12 MPa on a soil depth of 0.3 and 0.6 m, respectively. Deficit irrigation caused significant decrease of water content in fruits and not significant decrease of fruit weight and size, as well as fruit yield while water saving for irrigation amounted to 10%. Comfort-irrigated tomato plants produced fruits containing significantly higher titratable acidity, total soluble solids and vit. C content. There was a tendency to decrease carotenoid content and increase phenolic content in both years of the study. Due to the possibility of water saving with not significant yield decrease, it seems that the reduction of water use in growth stage III would be an adequate strategy for tomato cultivation in hot, dry climate.


HortScience ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. 721-726 ◽  
Author(s):  
Dilip R. Panthee ◽  
Chunxue Cao ◽  
Spencer J. Debenport ◽  
Gustavo R. Rodríguez ◽  
Joanne A. Labate ◽  
...  

There is a growing interest by consumers to purchase fresh tomatoes with improved quality traits including lycopene, total soluble solids (TSS), vitamin C, and total titratable acid (TTA) content. As a result, there are considerable efforts by tomato breeders to improve tomato for these traits. However, suitable varieties developed for one location may not perform the same in different locations. This causes a problem for plant breeders because it is too labor-intensive to develop varieties for each specific location. The objective of this study was to determine the extent of genotype × environment (G×E) interaction that influences tomato fruit quality. To achieve this objective, we grew a set of 42 diverse tomato genotypes with different fruit shapes in replicated trials in three locations: North Carolina, New York, and Ohio. Fruits were harvested at the red ripe stage and analyzed for lycopene, TSS, vitamin C, and TTA. Analysis of variance (ANOVA) revealed that there were significant differences (P < 0.05) among tomato genotypes, locations, and their interaction. Further analysis of quality traits from individual locations revealed that there was as much as 211% change in performance of some genotypes in a certain location compared with the average performance of a genotype. Lycopene was found to be most influenced by the environment, whereas TTA was the least influenced. This was in agreement with heritability estimates observed in the study for these quality traits, because heritability estimate for lycopene was 16%, whereas that for TTA was 87%. The extent of G×E interaction found for the fruit quality traits in the tomato varieties included in this study may be useful in identifying optimal locations for future field trials by tomato breeders aiming to improve tomato fruit quality.


HortScience ◽  
2013 ◽  
Vol 48 (5) ◽  
pp. 608-613 ◽  
Author(s):  
Letizia Tozzini ◽  
Paolo Sabbatini ◽  
G. Stanley Howell

Viticulture in Michigan is often limited by cool and humid climate conditions that impact vine growth and the achievement of adequate fruit quality at harvest. Sugars, pH, acids, and yeast available nitrogen (YAN) are indices of quality and, as such, of suitability for wine production. The aim of this study was to evaluate the efficacy of foliar nitrogen (N) fertilization applied as a 1% w/v urea solution at veraison as a method to increase canopy N availability during the fruit ripening stage. To test the effect on different source sink conditions, we imposed three levels of defoliation (0%, 33%, and 66% of leaves removed per vine) and measured net photosynthetic rate (Pn), leaf efficiency parameters, yield components, and fruit quality parameters. Apical leaf Pn was increased by the 33% defoliation (+12% from the undefoliated control) and by the urea application (+6%) 2 weeks after veraison. In basal leaves we observed a reduction in chlorophyll content (SPAD) and maximum photochemical efficiency of PSII (Fv/Fm) as a result of the defoliation treatment and secondarily by the N application, which resulted in a reduction in Pn. Therefore, mean shoot Pn was unaffected by the treatments. Although neither main nor lateral shoot growth was increased by any defoliation treatment, both percent soluble solids (%SS) and berry weight were significantly reduced by the 66% defoliation treatment. Application of urea increased yeast available amino acids by 20% but did not impact %SS or other chemical parameters indicating a different accumulation pathway for sugars and amino acids in the berry.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1149b-1149
Author(s):  
Sieglinde Snapp ◽  
Carol Shennan

Tomato Fruit quality can be improved by the use of moderately saline irrigation water. However, decreased fruit yields may occur if the saline treatment is initiated early in plant development or the salt concentration is high. Another concern with the use of saline irrigation water is increased plant susceptibility to disease. Two processing tomato cultivars were grown under low salt (ECa=1.1 ds/m), medium salt (ECa=2.8 ds/m) and high salt (ECa=4.6 ds/m) regimes, and in the presence and absence of Phytophthora parasitica, the casual agent of Phytophthora root rot. Salinity increased Phytophthora root rot severity in UC82B, the susceptible cultivar, but had a limited effect on CX8303, a cultivar known to have a measure of resistance to Phytophthora root rot. Fruit acidity and percent total soluble solids were enhanced in both cultivars by increasing salinity. Infection by P. parasitica increased acidity and soluble solids in UC82B fruit grown under high salt. Sodium and chloride concentrations in tomato fruit increased in a manner proportionate to the salt treatment applied; however, in the absence of disease, fruit Na+ and Cllevels were markedly lower compared to other tissues in the plant, The presence of salt-enhanced Phytophthora root rot in UC82B increased fruit Na+ concentration by almost 100%. Fruit Ca2+ and K+ levels, in contrast, declined moderately with increasing salinity and were not affected by disease.


2020 ◽  
Vol 1 (1) ◽  
pp. 38
Author(s):  
Carlos Agostinho Balate ◽  
Douglas Correa de Souza ◽  
Luis Felipe Lima e Silva ◽  
Luciane Vilela Resende ◽  
Sergio Tonetto de Freitas ◽  
...  

The use of abscisic acid (ABA) in agriculture has increased in the last few years due to the increase in ABA commercial availability at lower costs. The objective of this study was to determine the effect of exogenous ABA on tomato fruit quality parameters such as soluble solids (SS), total and soluble pectins, titratable acidity (TA) and flesh firmness. Tomatoes from the cultivar ‘Santa Clara’ were the study followed a complete randomized block desig, with four treatments in five repetitions. The treatments were plants not treated with ABA (control), foliar sprayed with ABA at 500 mg L-1, 150 mL drench with ABA at 500 mg L-1, or foliar plus drench treated with ABA. After harvesting, the physicochemical characteristics of the fruits were evaluated in the laboratory. All treatments were weekly applied to the plants from anthesis to harvest at fully maturity. Root treatment increased SS by up to 26.12%, increased ratio SS/TA, firmness and decreased soluble pectin. According to the results, it can be concluded that the application of ABA to leaves and roots can improve fruit quality by increasing the SS, ratio SS/TA. The method of application affects the SS content.


2021 ◽  
Vol 13 (4) ◽  
pp. 382-388
Author(s):  
Alaa Suhiel Ibrahim

Abstract. The world has always been striving to increase and intensify agricultural production, and there are several attempts to acheive that, such as grafting tomato on potato to obtain two crops from one plant. This investigation was conducted during 2020 in open field in Nahl village, Baniyas, Tartous Governorate, Syria. The vegetative and generative growth and yield have been studied for pomato (grafted tomato on potato) and compared to each tomato and potato separately. Tomato plants were significantly superior in plant height to pomato plants after 23 days of planting until the end of the experiment. On the other hand, there were significant differences between tomato plants and pomato plants in the leaf area after 23, 51 and 65 days of planting. Also, tomato plants significantly outperformed pomato plants in the number of flowers and fruits per plant and the tomato fruit set percent. Anyway, tomato plants were significantly superior in the average yield of tomato fruits per plant (1657 g.plant-1) to pomato plants (185 g.plant-1), while there were insignificant differences in the average yield of potato tubers per plant between pomato which failed to produce tubers and potato (48.25 g.plant-1). Studying the tomato fruit fresh weight showed a significant superiority of tomato plants (54.37 g.fruit-1) to pomato plants (35.97 g.fruit-1), while there were insignificant differences in the other physical (tomato fruit height, diameter and shape index) and chemical (tomato fruit content of total acids, total soluble solids and dry matter, %) properties.


Sign in / Sign up

Export Citation Format

Share Document