scholarly journals Reprogramming immune responses via microRNA modulation

Author(s):  
Juan R. Cubillos-Ruiz ◽  
Melanie R Rutkowski ◽  
Julia Tchou ◽  
Jose R. Conejo-Garcia

AbstractIt is becoming increasingly clear that there are unique sets of miRNAs that have distinct governing roles in several aspects of both innate and adaptive immune responses. In addition, new tools allow selective modulation of the expression of individual miRNAs, both in vitro and in vivo. Here, we summarize recent advances in our understanding of how miRNAs drive the activity of immune cells, and how their modulation in vivo opens new avenues for diagnostic and therapeutic interventions in multiple diseases, from immunodeficiency to cancer. Recent contributions from our laboratory and other groups to novel formulations for miRNA mimetics are further discussed

2021 ◽  
Vol 12 ◽  
Author(s):  
Indumathi Manoharan ◽  
Puttur D. Prasad ◽  
Muthusamy Thangaraju ◽  
Santhakumar Manicassamy

For decades, lactate has been considered an innocuous bystander metabolite of cellular metabolism. However, emerging studies show that lactate acts as a complex immunomodulatory molecule that controls innate and adaptive immune cells’ effector functions. Thus, recent advances point to lactate as an essential and novel signaling molecule that shapes innate and adaptive immune responses in the intestine and systemic sites. Here, we review these recent advances in the context of the pleiotropic effects of lactate in regulating diverse functions of immune cells in the tissue microenvironment and under pathological conditions.


2009 ◽  
Vol 206 (13) ◽  
pp. 3101-3114 ◽  
Author(s):  
Olga Schulz ◽  
Elin Jaensson ◽  
Emma K. Persson ◽  
Xiaosun Liu ◽  
Tim Worbs ◽  
...  

Chemokine receptor CX3CR1+ dendritic cells (DCs) have been suggested to sample intestinal antigens by extending transepithelial dendrites into the gut lumen. Other studies identified CD103+ DCs in the mucosa, which, through their ability to synthesize retinoic acid (RA), appear to be capable of generating typical signatures of intestinal adaptive immune responses. We report that CD103 and CX3CR1 phenotypically and functionally characterize distinct subsets of lamina propria cells. In contrast to CD103+ DC, CX3CR1+ cells represent a nonmigratory gut-resident population with slow turnover rates and poor responses to FLT-3L and granulocyte/macrophage colony-stimulating factor. Direct visualization of cells in lymph vessels and flow cytometry of mouse intestinal lymph revealed that CD103+ DCs, but not CX3CR1-expressing cells, migrate into the gut draining mesenteric lymph nodes (LNs) under steady-state and inflammatory conditions. Moreover, CX3CR1+ cells displayed poor T cell stimulatory capacity in vitro and in vivo after direct injection of cells into intestinal lymphatics and appeared to be less efficient at generating RA compared with CD103+ DC. These findings indicate that selectively CD103+ DCs serve classical DC functions and initiate adaptive immune responses in local LNs, whereas CX3CR1+ populations might modulate immune responses directly in the mucosa and serve as first line barrier against invading enteropathogens.


2019 ◽  
Vol 14 (8) ◽  
pp. 1934578X1987372
Author(s):  
Hwan H. Lee ◽  
Yoo J. Cho ◽  
Daeung Yu ◽  
Donghwa Chung ◽  
Gun-Hee Kim ◽  
...  

Fucoidans are widely used as an ingredient of dietary supplements. We investigated the immune stimulatory activities of Undaria pinnatifida ( Alariaceae) fucoidan-rich extract (UPF-RE) in vitro as well as in vivo . In vitro, the extract stimulated Raw 264.7 cells to produce significant nitric oxide (NO) metabolites and cytokines (TNF-α, IL-1α, IL-1β, and IL-6). It also induced the proliferation of primary mouse splenocytes and the secretion of IL-4, which correlated with the phosphorylation of Extracellular-signal-regulated kinase (ERK) protein. In in vivo experiments, first, 50 mg/kg of 3 different types of UPF-RE, DSU02, DSU02L (low molecular weight, <3 kDa), and DSU02H (high molecular weight, >10 kDa), were orally administered to C57BL/6 mice. After 14 days, the frequencies of CD3+, CD4+, and CD8+ T cells and NK cells from each group were analyzed. Plasma concentrations of TNF-α and IFN-γ were determined. The frequencies of CD3+ and CD4+ showed a statistically significant increase in splenocytes isolated from the DSU02 and DSU02H groups. Also, there was significant production of TNF-α and IFN-γ from the DSU02 group. Second, 3 different concentrations of DSU02 (50, 100, and 150 mg/kg) were orally administered. After 14 days, the proliferative capacity of CD3+, CD4+, and CD8+ T cells was investigated, and the plasma concentrations of IgM and total IgG were determined. Plasma concentration of IgM from the DSU02 150 mg/kg group was statistically significantly higher compared with that from the other groups. We suggest that UPF-RE could be a good candidate for a natural immune stimulator to induce innate as well as adaptive immune responses.


2010 ◽  
Vol 5 (1) ◽  
pp. 143-154 ◽  
Author(s):  
Benito Anton ◽  
Phillipe Leff ◽  
Joseph J. Meissler ◽  
Juan C. Calva ◽  
Rodolfo Acevedo ◽  
...  

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2758 ◽  
Author(s):  
Yin-Hua Cheng ◽  
Ih-Sheng Chen ◽  
Ying-Chi Lin ◽  
Chun-Wei Tung ◽  
Hsun-Shuo Chang ◽  
...  

Background T cells play a pivotal role in the adaptive immunity that participates in a wide range of immune responses through a complicated cytokine network. Imbalance of T-cell responses is involved in several immune disorders. Neolitsea species, one of the biggest genera in the family Lauraceae, have been employed widely as folk medicines for a long time in Asia. Previous phytochemical investigations revealed the abundance of terpenes in the leaves of N. hiiranensis, an endemic Neolitsea in Taiwan, and demonstrated anti-inflammatory activities. However, the effect of N. hiiranensis on the functionality of immune cells, especially T cells, is still unclear. In this study, we utilize in vitro and in vivo approaches to characterize the effects of leaves of N. hiiranensis and its terpenoids on adaptive immune responses. Methods Dried leaves of N. hiiranensis were extracted three times with cold methanol to prepare crude extracts and to isolate its secondary metabolites. The ovalbumin (OVA)-sensitized BALB/c mice were administrated with N. hiiranensis extracts (5–20 mg/kg). The serum and splenocytes of treated mice were collected to evaluate the immunomodulatory effects of N. hiiranensis on the production of OVA-specific antibodies and cytokines. To further identify the N. hiiranensis-derived compounds with immunomodulatory potentials, OVA-primed splenocytes were treated with compounds isolated from N. hiiranensis by determining the cell viability, cytokine productions, and mRNA expression in the presence of OVA in vitro. Results Crude extracts of leaves of N. hiiranensis significantly inhibited IL-12, IFN-γ, and IL-2 cytokine productions as well as the serum levels of antigen-specific IgM and IgG2a in vivo. Two of fourteen selected terpenoids and one diterpenoid derived from the leaves of N. hiiranensis suppressed IFN-γ in vitro. In addition, β-caryophyllene oxide attenuated the expression of IFN-γ, T-bet, and IL-12Rβ2 in a dose-dependent manner. N. hiiranensis-derived β-caryophyllene oxide inhibited several aspects of adaptive immune responses, including T-cell differentiation, IFN-γ production, and Th1-assocaited genes. Conclusion As IFN-γ is the key cytokine secreted by T helper-1 cells and plays a pivotal role in Th1 immune responses, our results suggested that the N. hiiranensis and its terpenoids may possess potential therapeutic effects on Th1-mediated immune disorders.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


2018 ◽  
Vol 400 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Sander Bekeschus ◽  
Christian Seebauer ◽  
Kristian Wende ◽  
Anke Schmidt

AbstractLeukocytes are professionals in recognizing and removing pathogenic or unwanted material. They are present in virtually all tissues, and highly motile to enter or leave specific sites throughout the body. Less than a decade ago, physical plasmas entered the field of medicine to deliver their delicate mix of reactive species and other physical agents for mainly dermatological or oncological therapy. Plasma treatment thus affects leukocytes via direct or indirect means: immune cells are either present in tissues during treatment, or infiltrate or exfiltrate plasma-treated areas. The immune system is crucial for human health and resolution of many types of diseases. It is therefore vital to study the response of leukocytes after plasma treatmentin vitroandin vivo. This review gathers together the major themes in the plasma treatment of innate and adaptive immune cells, and puts these into the context of wound healing and oncology, the two major topics in plasma medicine.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Qin Zhao ◽  
Miusi Shi ◽  
Chengcheng Yin ◽  
Zifan Zhao ◽  
Jinglun Zhang ◽  
...  

AbstractThe immune response of a biomaterial determines its osteoinductive effect. Although the mechanisms by which some immune cells promote regeneration have been revealed, the biomaterial-induced immune response is a dynamic process involving multiple cells. Currently, it is challenging to accurately regulate the innate and adaptive immune responses to promote osteoinduction in biomaterials. Herein, we investigated the roles of macrophages and dendritic cells (DCs) during the osteoinduction of biphasic calcium phosphate (BCP) scaffolds. We found that osteoinductive BCP directed M2 macrophage polarization and inhibited DC maturation, resulting in low T cell response and efficient osteogenesis. Accordingly, a dual-targeting nano-in-micro scaffold (BCP loaded with gold nanocage, BCP-GNC) was designed to regulate the immune responses of macrophages and DCs. Through a dual-wavelength photosensitive switch, BCP-GNC releases interleukin-4 in the early stage of osteoinduction to target M2 macrophages and then releases dexamethasone in the later stage to target immature DCs, creating a desirable inflammatory environment for osteogenesis. This study demonstrates that biomaterials developed to have specific regulatory capacities for immune cells can be used to control the early inflammatory responses of implanted materials and induce osteogenesis.


Sign in / Sign up

Export Citation Format

Share Document