scholarly journals Fabrication of color conductive inks by introducing SWCNT/Ag and various dyes into polymeric solutions for potential applications in disposable, cheap, and flexible electronics

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Hassan Ramezan Zadeh ◽  
Majid Seifi ◽  
Ebrahim Mousali

Abstract The multifaceted field of conductive inks is moving from a preliminary to an advanced stage. In this study, cellulose filter paper was used as a popular, renewable, and inexpensive material, with very interesting flexible characteristics. The novelty of this work was to use a single-walled carbon nanotube/silver (SWCNT/Ag) nanopowder in a color polymeric matrix for preparing highly conductive color inks resistant to washing. An investigation comparing three inks colored separately with different anionic and cationic dyes was performed to examine possible changes in electrical resistivity of the papers. The results obtained from FT-IR spectroscopy showed the presence of carboxylic groups in acid-treated SWCNTs and revealed Ag-containing bonds. XRD results confirmed functionalization of SWCNTs and obtaining SWCNT/Ag powder with Ag nanoparticles (NPs). Thermal stability and degradation of specimens were studied using TGA analysis to measure the percentage of Ag NPs in the SWCNTs network. The TEM micrographs were consistent with the Scherrer results. Finally, different color inks were synthesized with/without SWCNT/Ag nanopowder, and the four-point probe technique was utilized to measure the electrical resistivity of each colored paper. Consequently, preparation of color conductive inks by using ultra-narrow SWCNTs was done successfully.

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1525
Author(s):  
Sergey Vorobyev ◽  
Elena Vishnyakova ◽  
Maxim Likhatski ◽  
Alexander Romanchenko ◽  
Ivan Nemtsev ◽  
...  

Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide. The increased nanoparticles form loose submicrometer aggregates in the case of sulfide treatment, raspberry-like micrometer porous particles in the media containing Pd(II) chloride, and densely sintered particles in the reaction with inert H2PtCl6 complexes, probably via the formation of surface Ag-Pt alloys. The exposure of Ag NPs to HAuCl4 solution produced compact Ag films along with nanocrystals of Au metal and minor Ag and AgCl. The results are promising for chemical ambient temperature sintering and rendering silver-based nanomaterials, for example, for flexible electronics, catalysis, and other applications.


2021 ◽  
Vol 10 (1) ◽  
pp. 403-411
Author(s):  
Youliang Cheng ◽  
Mingjie Wang ◽  
Changqing Fang ◽  
Ying Wei ◽  
Jing Chen ◽  
...  

Abstract To change the optical properties and improve the antibacterial performances of carbon quantum dots (CQDs) and Ag NPs, mesoporous SiO2 spheres were combined with them to form the composites. In this paper, CQDs with a uniform size of about 3.74 nm were synthesized using glucose as carbon source. Then, CQDs/mesoporous SiO2/Ag NPs composites were obtained in situ under UV light irradiating by using mesoporous SiO2 and Ag NO3 as the carrier and silver resource, respectively. The diameter of CQDs/mesoporous SiO2/Ag NPs particles was in the range of 200–250 nm. With the increase in irradiating time, the red-shift in the UV-Vis spectrum for as-prepared CQDs/mesoporous SiO2/Ag NPs composites was found, and the adsorption peak was widened. In addition, the composites showed a high antibacterial activity against Staphylococcus aureus and Escherichia coli via disc diffusion method. These results indicated that inhibition circles for Ag NPs/mesoporous SiO2/CQDs and mesoporous SiO2/Ag NPs were similar in diameter. Furthermore, the two composites had a better bactericidal performance compared with other particles. Therefore, as-prepared CQDs/mesoporous SiO2/Ag NPs composites in this paper have great potential applications for fluorescent materials and antibacterial materials.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 10
Author(s):  
Daria V. Mamonova ◽  
Anna A. Vasileva ◽  
Yuri V. Petrov ◽  
Denis V. Danilov ◽  
Ilya E. Kolesnikov ◽  
...  

Surfaces functionalized with metal nanoparticles (NPs) are of great interest due to their wide potential applications in sensing, biomedicine, nanophotonics, etc. However, the precisely controllable decoration with plasmonic nanoparticles requires sophisticated techniques that are often multistep and complex. Here, we present a laser-induced deposition (LID) approach allowing for single-step surface decoration with NPs of controllable composition, morphology, and spatial distribution. The formation of Ag, Pt, and mixed Ag-Pt nanoparticles on a substrate surface was successfully demonstrated as a result of the LID process from commercially available precursors. The deposited nanoparticles were characterized with SEM, TEM, EDX, X-ray diffraction, and UV-VIS absorption spectroscopy, which confirmed the formation of crystalline nanoparticles of Pt (3–5 nm) and Ag (ca. 100 nm) with plasmonic properties. The advantageous features of the LID process allow us to demonstrate the spatially selective deposition of plasmonic NPs in a laser interference pattern, and thereby, the formation of periodic arrays of Ag NPs forming diffraction grating


2020 ◽  
Vol 5 (1) ◽  
pp. 761-767
Author(s):  
Reiyhaneh Abbasian ◽  
Hoda Jafarizadeh-Malmiri

AbstractGreen fabrication of metal nanoparticles (NPs), using natural reducing and stabilizing agents existed in plants and their derivatives, due to their unique properties, has gained more attention. The present study focuses on the synthesis of gold (Au), silver (Ag) and selenium (Se) NPs using coffee bean extract under hydrothermal conditions (1.5 atm and 121°C, for 15 min). Coffee bean extract obtained in 2 h processing using Clevenger apparatus and Fourier transform-infrared (FT-IR) spectroscopy indicated five highlighted peaks, namely, hydroxyl, amide, aromatic, alkane and ring groups. Dynamic light scattering analysis revealed that among three different NPs formed, fabricated Ag NPs had small particle size (153 nm) and high zeta potential value (16.8 mV). However, synthesized Au NPs had minimum polydispersity index (0.312). Results also indicated that fabricated Au, Se and Ag NPs had low antioxidant activity with values of 9.1, 8.9 and 8.7%, respectively. Morphological and antibacterial activity assessments, demonstrated that synthesized Ag, Au and Se NPs had spherical shape and high bactericidal activity against E. coli and S. aurous. Obtained results indicated that the synthesized NPs, can be utilized in various areas.


2021 ◽  
Vol 22 (9) ◽  
pp. 4803
Author(s):  
Eduardo Gomez ◽  
Ichiro Hisaki ◽  
Abderrazzak Douhal

Hydrogen-bonded organic frameworks (HOFs) are the focus of intense scientific research due their potential applications in science and technology. Here, we report on the synthesis, characterization, and photobehavior of a new HOF (T12F-1(124TCB)) based on a dehydrobenzoannulene derivative containing fluorine atoms (T12F-COOH). This HOF exhibits a 2D porous sheet, which is hexagonally networked via H-bonds between the carboxylic groups, and has an interlayers distance (4.3 Å) that is longer than that of a typical π–π interaction. The presence of the fluorine atoms in the DBA molecular units largely increases the emission quantum yield in DMF (0.33, T12F-COOH) when compared to the parent compound (0.02, T12-COOH). The time-resolved dynamics of T12F-COOH in DMF is governed by the emission from a locally excited state (S1, ~ 0.4 ns), a charge-transfer state (S1(CT), ~ 2 ns), and a room temperature emissive triplet state (T1, ~ 20 ns), in addition to a non-emissive triplet structure with a charge-transfer character (T1(CT), τ = 0.75 µs). We also report on the results using T12F-ester. Interestingly, FLIM experiments on single crystals unravel that the emission lifetimes of the crystalline HOF are almost twice those of the amorphous ones or the solid T12F-ester sample. This shows the relevance of the H-bonds in the photodynamics of the HOF and provides a strong basis for further development and study of HOFs based on DBAs for potential applications in photonics.


2018 ◽  
Vol 74 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Wen Cui ◽  
Ruyu Wang ◽  
Xi Shu ◽  
Yu Fan ◽  
Yang Liu ◽  
...  

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2-1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Hector R. Mendez-Rossal ◽  
Gernot M. Wallner

Conductive inks’ performance is affected by the printing conditions and the substrate’s properties. In this study, one graphite-, one polymer-, and two silver-based conductive inks were printed on four primer-coated metal substrates by screen printing. The compatibility and wettability between the inks and the primers were evaluated by infrared spectroscopy and surface energy measurements. The printed structures were characterized by laser confocal microscopy, peel-off tape testing, and four-point probe electrical resistivity testing. In general, silver inks exhibited the best performance in terms of printability and electrical conductivity. The graphite ink presented the worst printing, adhesion, and functional properties. The polymer-based ink revealed poor wettability but good adhesion and functionality. The surface roughness, energy, and polarity of the primer coating had no significant influence on the electrical conductivity of the printed inks.


2015 ◽  
Vol 1131 ◽  
pp. 106-109
Author(s):  
Shongpun Lokavee ◽  
Chatchawal Wongchoosuk ◽  
Teerakiat Kerdcharoen

Functionalized single-walled carbon nanotubes (f-SWNTs) have attracted great interest due to their enhancement of SWNT properties leading to an increase in potential applications beyond those of pristine SWNT. In this work, we have investigated the behavior of open-end (9,0) bi-carboxyl sidewall functionalized SWNTs in water using molecular dynamics (MD) technique within GROMACS software package based on the OPLS force fields with modified charges obtained from the first principles calculations. The model tubes including perfect and defective nanotubes covalently functionalized by bi-carboxylic groups on different sidewall surface orientation were fully optimized by B3LYP/6-31G(d,p). The simulations were performed at the constant volume and temperature in a rectangular box with periodic boundary conditions in which each system contains one model tube and ~1680 water molecules. The results form MD simulations showed that functionalization on the central carbon atom in the (C1,C ́1)SW-defective sites strongly affects on the dynamic behavior of CNT in water. Results showed that the hydrophilic behavior of the functionalized SWNT has been improved over the pristine and defective nanotubes.


2014 ◽  
Vol 96 ◽  
pp. 21-26 ◽  
Author(s):  
P.J. Reséndiz-Hernández ◽  
D.A. Cortés-Hernández ◽  
Juan Méndez Nonell ◽  
J.C. Escobedo-Bocardo

Silica aerogels have attracted increasingly more attention due to their extraordinary properties and their existing and potential applications in a wide variety of technological areas. Materials that promote bone-tissue formation at their surface and bond to osseous tissues when implanted are called bioactive, such as pseudowollastonite particles. In this work, the synthesis of aerogels with pseudowollastonite particles was performed. The synthesis involved the preparation of an alcogel by a two step sol-gel route followed by ambient pressure drying. To promote a higher bioactivity the obtained aerogels were then biomimetically treated using simulated body fluids, SBF and 1.5 SBF. A high bioactivity was demonstrated by FT-IR, SEM, EDS, and XRD. The in vitro biocompatibility was assessed by testing cytotoxicity using rat osteoblasts cultures. The results obtained indicate that these materials are highly potential aerogels for bone tissue regeneration.


2016 ◽  
Vol 847 ◽  
pp. 194-199
Author(s):  
Jin Dan Zhang ◽  
Mei Yu ◽  
Jian Hua Liu ◽  
Song Mei Li ◽  
Yan Bing Meng

Under the photoirradiation, DNA works as both template and reducing agent to drive the formation of metallic nanomaterials. In this study the plasmid DNA with different base pairs was applied as biotemplate to synthesize Ag nanoparticles (NPs) by using photoirradiation approach. The evolution of DNA dimension changed during the synthesis process, and their effect on the morphology of the synthesized Ag NPs was studied by UV-Vis spectra, FT-IR spectra, Raman spectra, AFM, and TEM. It is found that the plasmid DNA shrinked twice during the synthesis, the first time happened when the Ag (I) cations neutralized the negative charge along the DNA chain, and the second time happened when plasmid DNA reduced Ag (I) induced by the ultraviolet C (254 nm) irradiation. The size of the synthesized Ag NPs showed approximately linear relationship with the dimension of plasmid DNA scaffolds under this photo-induce condition. The compaction degree of the plasmid DNA during the Ag formation was shown by the slope of the linear relationship.


Sign in / Sign up

Export Citation Format

Share Document