scholarly journals Alien invertebrates transported accidentally to the Polish Antarctic Station in cargo and on fresh foods

2013 ◽  
Vol 34 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Katarzyna J. Chwedorzewska ◽  
Małgorzata Korczak−Abshire ◽  
Maria Olech ◽  
Maria Lityńska−Zając ◽  
Anna Augustyniuk−Kram

AbstractDuring three austral summer seasons cargo, expeditioner clothes and equipment of the Polish Antarctic Expedition were examined for the presence of alien propagules. De− tailed inspections were undertaken at the station buildings, searching for any invertebrates. During each austral summer fresh fruits and vegetables were also inspected. A total of 359 invertebrates and their remains were found in cargo transported to Arctowski Station, or caught in the station’s facilities. The majority of samples were classified as cultivation pests (26%), food pests (43%), wood−destroying pests (4%), domestic insects and arachnids (15%). Through supply of the research station a wide range of alien organisms can be acci− dentally transported and ultimately introduced to the Antarctic. This study has clearly dem− onstrated that almost all cargo items can be a potential vector for alien organisms. Species from a broad range of biological groups can be transported to the Antarctic and remain in a viable state.

2018 ◽  
Author(s):  
Paul Herenz ◽  
Heike Wex ◽  
Alexander Mangold ◽  
Quentin Laffineur ◽  
Irina V. Gorodestkaya ◽  
...  

Abstract. For three austral summer seasons (2013–2016, each from December to February) aerosol particles arriving at the Belgian Antarctic research station Princess Elisabeth (PE), in Dronning Maud Land in East Antarctica were characterized in terms of number concentrations of total aerosol particles (NCN) and cloud condensation nuclei (NCCN), the particle number size distribution (PNSD), the aerosol particle hygroscopicity and the influence of the air mass origin on NCN and NCCN. In general NCN was found to range from 40 to 6700 cm−3 with a median of 333 cm−3, while NCCN was found to cover a range between less than 10 and 1300 cm−3 for supersaturations (SS) between 0.1 and 0.7 %. It is shown that the aerosol is Aitken mode dominated and is characterized by a significant amount of freshly, secondarily formed aerosol particles, with 94 % and 36 % of the aerosol particles are smaller than 90 nm and ≈ 35 nm, respectively. Measurements of the basic meteorological parameters as well as the history of the air masses arriving at the measurement station indicate that the station is influenced by both, continental air masses originating from the Antarctic inland ice sheet (continental events – CE) and marine air masses originating from the Southern Ocean (marine events – ME). CEs came along with rather constant NCN and NCCN values, which we denote to be Antarctic continental background concentrations. MEs however cause large fluctuations in NCN and NCCN caused by scavenging due to precipitation or new particle formation based on marine precursors. The application of Hysplit back trajectories in form of the potential source contribution function (PSCF) analysis indicate, that the region of the Southern Ocean is a potential source of Aitken mode particles. For particles larger than ≈ 110 nm (CCN measured at SS of 0.1 %) the Antarctic ice shelf regions were found to be a potential source region, most likely due to the emission of sea salt aerosol particles, released from snow particles from surface snow layers by sublimation, e.g., during periods of high wind speed, leading to drifting or blowing snow. On the basis of the PNSDs and NCCN, the critical diameter for cloud droplet activation and the aerosol particle hygroscopicity parameter κ were determined to be 110 nm and 1, respectively, for a SS of 0.1 %. The region of the Antarctic inland plateau however was not found to feature a significant source region for CN and CCN measured at the PE station in austral summer.


2003 ◽  
Vol 69 (8) ◽  
pp. 4884-4891 ◽  
Author(s):  
Kevin A. Hughes

ABSTRACT Factors affecting fecal microorganism survival and distribution in the Antarctic marine environment include solar radiation, water salinity, temperature, sea ice conditions, and fecal input by humans and local wildlife populations. This study assessed the influence of these factors on the distribution of presumptive fecal coliforms around Rothera Point, Adelaide Island, Antarctic Peninsula during the austral summer and winter of February 1999 to September 1999. Each factor had a different degree of influence depending on the time of year. In summer (February), although the station population was high, presumptive fecal coliform concentrations were low, probably due to the biologically damaging effects of solar radiation. However, summer algal blooms reduced penetration of solar radiation into the water column. By early winter (April), fecal coliform concentrations were high, due to increased fecal input by migrant wildlife, while solar radiation doses were low. By late winter (September), fecal coliform concentrations were high near the station sewage outfall, as sea ice formation limited solar radiation penetration into the sea and prevented wind-driven water circulation near the outfall. During this study, environmental factors masked the effect of station population numbers on sewage plume size. If sewage production increases throughout the Antarctic, environmental factors may become less significant and effective sewage waste management will become increasingly important. These findings highlight the need for year-round monitoring of fecal coliform distribution in Antarctic waters near research stations to produce realistic evaluations of sewage pollution persistence and dispersal.


2011 ◽  
Vol 11 (3) ◽  
pp. 7555-7591 ◽  
Author(s):  
K. Hara ◽  
K. Osada ◽  
C. Nishita-Hara ◽  
T. Yamanouchi

Abstract. Tethered balloon-borne aerosol measurements were conducted at Syowa Station, Antarctica during the 46th Japanese Antarctic expedition (2005–2006). The CN concentration reached a maximum in the summer, although the number concentrations of fine particles (Dp > 0.3 μm) and coarse particles (Dp > 2.0 μm) increased during the winter-spring. The CN concentration was 30–2200 cm−3 near the surface (surface – 500 m) and 7–7250 cm−3 in the lower free troposphere (>1500 m). During the austral summer, higher CN concentration was often observed in the lower free troposphere, where the number concentrations in fine and coarse modes were remarkably lower. The frequent appearance of higher CN concentrations in the free troposphere relative to continuous aerosol measurements at the ground strongly suggests that new particle formation is more likely to occur in the lower free troposphere in Antarctic regions. Seasonal variations of size distribution of fine-coarse particles show that the contribution of the coarse mode was greater in the winter-spring than in summer because of the dominance of sea-salt particles in the winter-spring. The number concentrations of fine and coarse particles were high in air masses from the ocean and mid-latitudes. Particularly, aerosol enhancement was observed not only in the boundary layer but also in the lower free troposphere during and immediately after Antarctic haze events occurring in May, July, and September.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
César Marina-Montes ◽  
Luis Vicente Pérez-Arribas ◽  
Jesús Anzano ◽  
Jorge O. Cáceres

Quantification of suspended particulate matter (SPM) measurements—together with statistical tools, polar contour maps and backward air mass trajectory analyses—were implemented to better understand the main local and remote sources of contamination in this pristine region. Field campaigns were carried out during the austral summer of 2016–2017 at the “Gabriel de Castilla” Spanish Antarctic Research Station, located on Deception Island (South Shetland Islands, Antarctic). Aerosols were deposited in an air filter through a low-volume sampler and chemically analysed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES). Elements such as Al, Ca, Fe, K, Mg, Na, P, S, Cu, Pb, Sr, Ti, Zn, Hf, Zr, V, As, Ti, Mn, Sn and Cr were identified. The statistical tools together with their correlations (Sr/Na, Al/Ti, Al/Mn, Al/Sr, Al/Pb, K/P) suggest a potentially significant role of terrestrial inputs for Al, Ti, Mn, Sr and Pb; marine environments for Sr and Na; and biological inputs for K and P. Polar contour graphical maps allowed reproducing wind maps, revealing the biological local distribution of K and P (penguin colony). Additionally, backward trajectory analysis confirmed previous affirmations and atmospheric air masses following the Antarctic circumpolar pattern.


2010 ◽  
Vol 51 (55) ◽  
pp. 9-15 ◽  
Author(s):  
Shin Sugiyama ◽  
Hiroyuki Enomoto ◽  
Shuji Fujita ◽  
Kotaro Fukui ◽  
Fumio Nakazawa ◽  
...  

AbstractAs a joint contribution of Japan and Sweden to the International Polar Year 2007–09, a field expedition between Syowa and Wasa stations in East Antarctica was carried out in the 2007/08 austral summer season. Along the 2800 km long expedition route, the dielectric permittivity of the upper 1 m snow layer was measured at intervals of approximately 50 km using a snow fork, a parallel-wire transmission-line resonator. More than 2000 measurements were performed under carefully calibrated conditions, mostly in the interior of Antarctica. The permittivity ε′ was a function of snow density as in previous studies on dry snow, but the values were significantly smaller than those reported before. In the light of the dielectric mixture theory, the relatively smaller ε′ obtained in this study can be attributed to the snow structures characteristic in the studied region. Our data suggest that the permittivity of snow in the Antarctic interior is significantly affected by weak bonding between snow grains, which is due to depth-hoar formation in the extremely low-temperature conditions.


2015 ◽  
Vol 7 (2) ◽  
pp. 649-651
Author(s):  
P. Sidhya ◽  
M.K. Pandit

The present experiment was undertaken to determine the mutagenic effectiveness and efficiency of gamma rays on different biological parameters in snake gourd. The research was conducted in two generations namely M1 and M2 during spring-summer season (mid- February) of 2012 and 2013 at the Horticulture research station, Mondoury, Bidhan Chandra Krishi Viswavidyalaya. The parent material, selfed seeds of BCSG-28 variety were irradiated with 100 Gy, 150 Gy, 200 Gy, 250 Gy and 300 Gy doses of gamma rays. The seeds along with control were space planted for raising M1 generation. Each M1 plant was harvested separately and desirable M1 individual plant progeny rows were laid in RBD for raising M2 generation. The effectiveness and efficiency of the mutagen used was assessed from the data on biological damage in M1 generation. In M1 generation, results showed a dose dependent retardation in biological parameters like seed germination, plant survival and 200 Gy was depicted as LD50 indicating less damaging effect at lower doses on genetic material. In M2 generation, Lower doses 100 Gy (28.80 effectiveness, 21.58 efficiency) and 150 Gy (18.33 effectiveness, 8.68 efficiency) treatments were found as effective and efficient and a wide range of induced variability was observed in almost all traits. The mutants with short fruit, higher fruit diameter and reduced vine length were isolated in M2 generation.


2010 ◽  
Vol 10 (6) ◽  
pp. 15109-15165 ◽  
Author(s):  
W. J. Bloss ◽  
M. Camredon ◽  
J. D. Lee ◽  
D. E. Heard ◽  
J. M. C. Plane ◽  
...  

Abstract. A modelling study of radical chemistry in the coastal Antarctic boundary layer, based upon observations performed in the course of the CHABLIS (Chemistry of the Antarctic Boundary Layer and the Interface with Snow) campaign at Halley Research Station in coastal Antarctica during the austral summer 2004/2005, is described: a detailed zero-dimensional photochemical box model was used, employing inorganic and organic reaction schemes drawn from the Master Chemical Mechanism, with additional halogen (iodine and bromine) reactions added. The model was constrained to observations of long-lived chemical species, measured photolysis rates and meteorological parameters, and the simulated levels of HOx, NOx and XO compared with those observed. The model was able to replicate the mean levels and diurnal variation in the halogen oxides IO and BrO, and to reproduce NOx levels and speciation very well. The NOx source term implemented compared well with that directly measured in the course of the CHABLIS experiments. The model systematically overestimated OH and HO2 levels, likely a consequence of the combined effects of (a) estimated physical parameters and (b) uncertainties within the halogen, particularly iodine, chemical scheme. The principal sources of HOx radicals were the photolysis and bromine-initiated oxidation of HCHO, together with O(1D)+H2O. The main sinks for HOx were peroxy radical self- and cross-reactions, with the sum of all halogen-mediated HOx loss processes accounting for 40% of the total sink. Reactions with the halogen monoxides dominated CH3O2–HO2–OH interconversion, with associated local chemical ozone destruction in place of the ozone production which is associated with radical cycling driven by the analogous NO reactions. The analysis highlights the need for observations of physical parameters such as aerosol surface area and boundary layer structure to constrain such calculations, and the dependence of simulated radical levels and ozone loss rates upon a number of uncertain kinetic and photochemical parameters for iodine species.


2019 ◽  
Vol 19 (1) ◽  
pp. 275-294 ◽  
Author(s):  
Paul Herenz ◽  
Heike Wex ◽  
Alexander Mangold ◽  
Quentin Laffineur ◽  
Irina V. Gorodetskaya ◽  
...  

Abstract. For three austral summer seasons (2013–2016, each from December to February) aerosol particles arriving at the Belgian Antarctic research station Princess Elisabeth (PE) in Dronning Maud Land in East Antarctica were characterized. This included number concentrations of total aerosol particles (NCN) and cloud condensation nuclei (NCCN), the particle number size distribution (PNSD), the aerosol particle hygroscopicity, and the influence of the air mass origin on NCN and NCCN. In general NCN was found to range from 40 to 6700 cm−3, with a median of 333 cm−3, while NCCN was found to cover a range between less than 10 and 1300 cm−3 for supersaturations (SSs) between 0.1 % and 0.7 %. It is shown that the aerosol is dominated by the Aitken mode, being characterized by a significant amount of small, and therefore likely secondarily formed, aerosol particles, with 94 % and 36 % of the aerosol particles smaller than 90 and ≈35 nm, respectively. Measurements of the basic meteorological parameters as well as the history of the air masses arriving at the measurement station indicate that the station is influenced by both marine air masses originating from the Southern Ocean and coastal areas around Antarctica (marine events – MEs) and continental air masses (continental events – CEs). CEs, which were defined as instances when the air masses spent at least 90 % of the time over the Antarctic continent during the last 10 days prior to arrival at the measurements station, occurred during 61 % of the time during which measurements were done. CEs came along with rather constant NCN and NCCN values, which we denote as Antarctic continental background concentrations. MEs, however, cause large fluctuations in NCN and NCCN, with low concentrations likely caused by scavenging due to precipitation and high concentrations likely originating from new particle formation (NPF) based on marine precursors. The application of HYSPLIT back trajectories in form of the potential source contribution function (PSCF) analysis indicate that the region of the Southern Ocean is a potential source of Aitken mode particles. On the basis of PNSDs, together with NCCN measured at an SS of 0.1 %, median values for the critical diameter for cloud droplet activation and the aerosol particle hygroscopicity parameter κ were determined to be 110 nm and 1, respectively. For particles larger than ≈110 nm the Southern Ocean together with parts of the Antarctic ice shelf regions were found to be potential source regions. While the former may contribute sea spray particles directly, the contribution of the latter may be due to the emission of sea salt aerosol particles, released from snow particles from surface snow layers, e.g., during periods of high wind speed, leading to drifting or blowing snow. The region of the Antarctic inland plateau, however, was not found to feature a significant source region for aerosol particles in general or for cloud condensation nuclei measured at the PE station in the austral summer.


2011 ◽  
Vol 11 (11) ◽  
pp. 5471-5484 ◽  
Author(s):  
K. Hara ◽  
K. Osada ◽  
C. Nishita-Hara ◽  
T. Yamanouchi

Abstract. Tethered balloon-borne aerosol measurements were conducted at Syowa Station, Antarctica during the 46th Japanese Antarctic expedition (2005–2006). The CN concentration reached a maximum in the summer, although the number concentrations of fine particles (Dp>0.3 μm) and coarse particles (Dp>2.0 μm) increased during the winter–spring. The CN concentration was 30–2200 cm−3 near the surface (surface – 500 m) and 7–7250 cm−3 in the lower free troposphere (>1500 m). During the austral summer, higher CN concentration was often observed in the lower free troposphere, where the number concentrations in fine and coarse modes were remarkably lower. The frequent appearance of higher CN concentrations in the free troposphere relative to continuous aerosol measurements at the ground strongly suggests that new particle formation is more likely to occur in the lower free troposphere in Antarctic regions. Seasonal variations of size distribution of fine-coarse particles show that the contribution of the coarse mode was greater in the winter–spring than in summer because of the dominance of sea-salt particles in the winter–spring. The number concentrations of fine and coarse particles were high in air masses from the ocean and mid-latitudes. Particularly, aerosol enhancement was observed not only in the boundary layer, but also in the lower free troposphere during and immediately after Antarctic haze events occurring in May, July and September.


2010 ◽  
Vol 10 (21) ◽  
pp. 10187-10209 ◽  
Author(s):  
W. J. Bloss ◽  
M. Camredon ◽  
J. D. Lee ◽  
D. E. Heard ◽  
J. M. C. Plane ◽  
...  

Abstract. A modelling study of radical chemistry in the coastal Antarctic boundary layer, based upon observations performed in the course of the CHABLIS (Chemistry of the Antarctic Boundary Layer and the Interface with Snow) campaign at Halley Research Station in coastal Antarctica during the austral summer 2004/2005, is described: a detailed zero-dimensional photochemical box model was used, employing inorganic and organic reaction schemes drawn from the Master Chemical Mechanism, with additional halogen (iodine and bromine) reactions added. The model was constrained to observations of long-lived chemical species, measured photolysis frequencies and meteorological parameters, and the simulated levels of HOx, NOx and XO compared with those observed. The model was able to replicate the mean levels and diurnal variation in the halogen oxides IO and BrO, and to reproduce NOx levels and speciation very well. The NOx source term implemented compared well with that directly measured in the course of the CHABLIS experiments. The model systematically overestimated OH and HO2 levels, likely a consequence of the combined effects of (a) estimated physical parameters and (b) uncertainties within the halogen, particularly iodine, chemical scheme. The principal sources of HOx radicals were the photolysis and bromine-initiated oxidation of HCHO, together with O(1D) + H2O. The main sinks for HOx were peroxy radical self- and cross-reactions, with the sum of all halogen-mediated HOx loss processes accounting for 40% of the total sink. Reactions with the halogen monoxides dominated CH3O2-HO2-OH interconversion, with associated local chemical ozone destruction in place of the ozone production which is associated with radical cycling driven by the analogous NO reactions. The analysis highlights the need for observations of physical parameters such as aerosol surface area and boundary layer structure to constrain such calculations, and the dependence of simulated radical levels and ozone loss rates upon a number of uncertain kinetic and photochemical parameters for iodine species.


Sign in / Sign up

Export Citation Format

Share Document