scholarly journals Antibiotic susceptibility and resistance profiles of Romanian Clostridioides difficile isolates

2018 ◽  
Vol 26 (2) ◽  
pp. 189-200
Author(s):  
Ioana Macovei ◽  
Daniela Lemeni ◽  
Roxana Șerban ◽  
Andreea Niculcea ◽  
Gabriel A. Popescu ◽  
...  

Abstract This study investigated the antibiotic susceptibility patterns and genetic resistance markers of 35 C. difficile strains isolated from patients with C. difficile infection. Vancomycin, metronidazole, tigecycline, teicoplanin, rifampicin, moxifloxacin, cefotaxime, tetracycline, erythromycin, clindamycin, chloramphenicol, linezolid and imipenem MICs were determined for toxigenic strains belonging to PCR ribotypes (PR) 012 (2), 014 (4), 017 (3), 018 (2), 027 (17), 046 (2), 087 (3) and 115 (2). Results showed vancomycin, metronidazole, tigecycline and teicoplanin to be active against all isolates. High resistance rates were noticed against cefotaxime (n = 35), clindamycin (n = 33), imipenem (n = 31), moxifloxacin (n = 25), erythromycin (n = 25) and rifampicin (n = 22). Linezolid-resistance was found in three isolates (PR 017/2, PR 012/1), showing complex resistance (7-9 antibiotics). PR 012, 017, 018, 027 and 046 isolates (n = 26) were resistant to 5-9 antibiotics. Twelve resistance profiles (2-9 antibiotics) were detected. Rifampicin-moxifloxacin-cefotaxime-erythromycin-clindamycin-imipenem-resistance was predominant, being expressed by 18 strains (PR 027/17, PR 018/1). PCR results suggested tetracycline-resistance to be induced by the gene tetM. Three tetM-positive isolates (PRs 012, 046), were also tndX-positive, suggesting the presence of a Tn5397-like element. Only two MLSB-resistant strains (PR 012) had the ermB gene and chloramphenicol-resistance determinant catD was not detected, leaving room for further investigating resistance mechanisms. Multidrug resistance could be attributed to most analysed strains, underlining, once more, the impact of wide-spectrum antimicrobial over prescription, still a tendency in our country, on transmission of antimicrobial resistance and emergence of epidemic C. difficile strains generating outbreaks.

2021 ◽  
Vol 15 (07) ◽  
pp. 972-978
Author(s):  
Ahmed Elsayed Taha Attia

Introduction: Presence of Clostridioides difficile in stool of food birds and animals is a risk for contamination of their meats to become potential sources of human infection. The main virulence factors of C. difficile are its resistance to antibiotics, production of toxins and spores. As far as I know, this is the first study to evaluate C. difficile prevalence in chicken meats, its toxigenic activities and antibiotics sensitivity patterns in Al-Jouf, Saudi Arabia. Methodology: Totally, 250 raw chicken meat samples were examined. Standard microbiological and biochemical procedures were used for C. difficile isolation and identification. The suspected colonies were tested by L-proline and C. difficile test kits then confirmed by Vitek 2 compact system. Xpect C. difficile toxin A/B test was used to detect A/B toxins production. Antibiotics susceptibility patterns were detected by Epsilon tests. Results: C. difficile was isolated from 11/250 (4.40%) chicken meat samples; 5/65 (7.69%) legs, 3/65 (4.61%) thighs, 2/60 (3.33%) wings and 1/60 (1.67%) breasts (p = 0.4). All isolates were non-toxigenic. Although all isolates were vancomycin sensitive, some isolates were intermediate/resistant to metronidazole, tetracycline, clindamycin or moxifloxacin antibiotics with variable degrees. Conclusions: C. difficile might contaminate retail chicken meats. Although low level of contamination by non-toxigenic strains was detected, chicken meats should be investigated as C. difficile infection sources for humans especially elders, immune-compromised and long terms wide spectrum antibiotics-used persons. Decreased sensitivity of C. difficile to antibiotics is emerging.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S33-S33 ◽  
Author(s):  
Roby Bhattacharyya ◽  
Jamin Liu ◽  
Peijun Ma ◽  
Nirmalya Bandyopadhyay ◽  
Jonathan Livny ◽  
...  

Abstract Background Culture-based antibiotic susceptibility testing, the gold standard, is too slow to guide early antibiotic selection, while newer genotypic methods require comprehensive knowledge of resistance mechanisms to predict phenotype. Quantitative measurement of key antibiotic-responsive transcripts offers a rapid, phenotypic assay for assessing antibiotic susceptibility, agnostic to the genetic basis for resistance. Methods We performed RNA-Seq on Klebsiella pneumoniae and Acinetobacter baumanii treated with ciprofloxacin, gentamicin, or meropenem for 0, 10, 30, and 60 minutes. For each, we identified 50 responsive transcripts whose expression levels differ most between susceptible and resistant organisms upon antibiotic exposure. We measured their expression using a multiplexed fluorescent RNA hybridization assay (NanoString) in 69 clinical isolates, including a “test set” of multidrug-resistant strains from the CDC, in an 8-hour assay. Gene expression data from test strains were compared against known susceptible and resistant isolates to generate a transcriptional susceptibility metric. We also designed NanoString probes to detect 5 carbapenemase genes (KPC-2, KPC-3, NDM-1, OXA-48, and CTX-M15). Results Across all bacteria-antibiotic pairs tested, a susceptibility metric derived from these transcriptional assays correctly grouped isolates in 167 of 173 tests (Table 1), with only 1 of 88 resistant isolates misclassified as susceptible. Five of six incorrectly grouped isolates were within one dilution of the breakpoint MIC, including the misclassified resistant isolate. Conclusion We demonstrate phenotypic antibiotic resistance detection based on fluorescent RNA detection in an 8-hour assay. We have previously published proof-of-concept studies that this assay may be run on a positive blood culture bottle with minimal sample processing. By coupling this phenotypic assay with detection of genetic resistance determinants (demonstrated for carbapenemases) in a single assay, strains with unexplained resistance can be prioritized for further study. Disclosures All authors: No reported disclosures.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 701
Author(s):  
Yanchu Li ◽  
Qingqing Ding ◽  
Keyue Li ◽  
Stanimir Valtchev ◽  
Shufang Li ◽  
...  

It is inevitable that high-intensity, wide-spectrum electromagnetic emissions are generated by the power electronic equipment of the Extra High Voltage (EHV) power converter station. The surveillance flight of Unmanned Aerial Vehicles (UAVs) is thus, situated in a complex electromagnetic environment. The ubiquitous electromagnetic interference demands higher electromagnetic protection requirements from the UAV construction and operation. This article is related to the UAVs patrol inspections of the power line in the vicinity of the EHV converter station. The article analyzes the electromagnetic interference characteristics of the converter station equipment in the surrounding space and the impact of the electromagnetic emission on the communication circuits of the UAV. The anti-electromagnetic interference countermeasures strive to eliminate or reduce the threats of electromagnetic emissions on the UAV’s hardware and its communication network.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S110-S110
Author(s):  
Christina Maguire ◽  
Dusten T Rose ◽  
Theresa Jaso

Abstract Background Automatic antimicrobial stop orders (ASOs) are a stewardship initiative used to decrease days of therapy, prevent resistance, and reduce drug costs. Limited evidence outside of the perioperative setting exists on the effects of ASOs on broad spectrum antimicrobial use, discharge prescription duration, and effects of missed doses. This study aims to evaluate the impact of an ASO policy across a health system of adult academic and community hospitals for treatment of intra-abdominal (IAI) and urinary tract infections (UTI). ASO Outcome Definitions ASO Outcomes Methods This multicenter retrospective cohort study compared patients with IAI and UTI treated before and after implementation of an ASO. Patients over the age of 18 with a diagnosis of UTI or IAI and 48 hours of intravenous (IV) antimicrobial administration were included. Patients unable to achieve IAI source control within 48 hours or those with a concomitant infection were excluded. The primary outcome was the difference in sum length of antimicrobial therapy (LOT). Secondary endpoints include length and days of antimicrobial therapy (DOT) at multiple timepoints, all cause in hospital mortality and readmission, and adverse events such as rates of Clostridioides difficile infection. Outcomes were also evaluated by type of infection, hospital site, and presence of infectious diseases (ID) pharmacist on site. Results This study included 119 patients in the pre-ASO group and 121 patients in the post-ASO group. ASO shortened sum length of therapy (LOT) (12 days vs 11 days respectively; p=0.0364) and sum DOT (15 days vs 12 days respectively; p=0.022). This finding appears to be driven by a decrease in outpatient LOT (p=0.0017) and outpatient DOT (p=0.0034). Conversely, ASO extended empiric IV LOT (p=0.005). All other secondary outcomes were not significant. Ten patients missed doses of antimicrobials due to ASO. Subgroup analyses suggested that one hospital may have influenced outcomes and reduction in LOT was observed primarily in sites without an ID pharmacist on site (p=0.018). Conclusion While implementation of ASO decreases sum length of inpatient and outpatient therapy, it may not influence inpatient length of therapy alone. Moreover, ASOs prolong use of empiric intravenous therapy. Hospitals without an ID pharmacist may benefit most from ASO protocols. Disclosures All Authors: No reported disclosures


Author(s):  
Leonardo Cesanelli ◽  
Berta Ylaitė ◽  
Giuseppe Messina ◽  
Daniele Zangla ◽  
Stefania Cataldi ◽  
...  

High-level young athletes need to face a wide spectrum of stressors on their journey to élite categories. The aims of the present study are (i) to evaluate session rate of perceived exertion (sRPE) at different training impulse (TRIMP) categories and the correlations between these two variables and, (ii) evaluate the correlations between sRPE, fluid loss, and carbohydrate consumption during exercise. Data on Edward’s TRIMP, sRPE, body mass loss pre- and post- exercise (∆), and carbohydrate consumption (CHO/h) during exercise have been acquired from eight male junior cyclists during a competitive season. One-way ANOVA and correlation analysis with linear regression have been performed on acquired data. sRPE resulted in a significant difference in the three TRIMP categories (p < 0.001). sRPE resulted in being very largely positively associated with TRIMP values (p < 0.001; R = 0.71). ∆ as well as CHO/h was largely negatively related with sRPE in all TRIMP categories (p < 0.001). The results confirmed the role of fluid balance and carbohydrate consumption on the perception of fatigue and fatigue accumulation dynamics independently from the training load. Young athletes’ training load monitoring and nutritional-hydration support represent important aspects in athlete’s exercise-induced fatigue management.


2021 ◽  
Vol 10 (5) ◽  
pp. 1143
Author(s):  
Simona Halúsková ◽  
Roman Herzig ◽  
Dagmar Krajíčková ◽  
Abduljabar Hamza ◽  
Antonín Krajina ◽  
...  

Anterior circulation stroke (ACS) is associated with typical symptoms, while posterior circulation stroke (PCS) may cause a wide spectrum of less specific symptoms. We aim to assess the correlation between the initial presentation of acute ischemic stroke (AIS) symptoms and the treatment timeline. Using a retrospective, observational, single-center study, the set consists of 809 AIS patients treated with intravenous thrombolysis (IVT) and/or endovascular treatment (EVT). We investigate the impact of baseline clinical AIS symptoms and the affected vascular territory on recanalization times in patients treated with IVT only and EVT (±IVT). Regarding the IVT-only group, increasing the National Institutes of Health Stroke Scale (NIHSS) score on admission and speech difficulties are associated with shorter (by 1.59 ± 0.76 min per every one-point increase; p = 0.036, and by 24.56 ± 8.42 min; p = 0.004, respectively) and nausea/vomiting with longer (by 43.72 ± 13.13 min; p = 0.001) onset-to-needle times, and vertigo with longer (by 8.58 ± 3.84 min; p = 0.026) door-to-needle times (DNT). Regarding the EVT (±IVT) group, coma is associated with longer (by 22.68 ± 6.05 min; p = 0.0002) DNT, anterior circulation stroke with shorter (by 47.32 ± 16.89 min; p = 0.005) onset-to-groin time, and drooping of the mouth corner with shorter (by 20.79 ± 6.02 min; p = 0.0006) door-to-groin time. Our results demonstrate that treatment is initiated later in strokes with less specific symptoms than in strokes with typical symptoms.


Author(s):  
Cláudia A. Ribeiro ◽  
Luke A. Rahman ◽  
Louis G. Holmes ◽  
Ayrianna M. Woody ◽  
Calum M. Webster ◽  
...  

AbstractThe spread of multidrug-resistance in Gram-negative bacterial pathogens presents a major clinical challenge, and new approaches are required to combat these organisms. Nitric oxide (NO) is a well-known antimicrobial that is produced by the immune system in response to infection, and numerous studies have demonstrated that NO is a respiratory inhibitor with both bacteriostatic and bactericidal properties. However, given that loss of aerobic respiratory complexes is known to diminish antibiotic efficacy, it was hypothesised that the potent respiratory inhibitor NO would elicit similar effects. Indeed, the current work demonstrates that pre-exposure to NO-releasers elicits a > tenfold increase in IC50 for gentamicin against pathogenic E. coli (i.e. a huge decrease in lethality). It was therefore hypothesised that hyper-sensitivity to NO may have arisen in bacterial pathogens and that this trait could promote the acquisition of antibiotic-resistance mechanisms through enabling cells to persist in the presence of toxic levels of antibiotic. To test this hypothesis, genomics and microbiological approaches were used to screen a collection of E. coli clinical isolates for antibiotic susceptibility and NO tolerance, although the data did not support a correlation between increased carriage of antibiotic resistance genes and NO tolerance. However, the current work has important implications for how antibiotic susceptibility might be measured in future (i.e. ± NO) and underlines the evolutionary advantage for bacterial pathogens to maintain tolerance to toxic levels of NO.


2020 ◽  
Vol 41 (S1) ◽  
pp. s407-s407
Author(s):  
Lana Dbeibo ◽  
Joy Williams ◽  
Josh Sadowski ◽  
William Fadel ◽  
Vera Winn ◽  
...  

Background: Polymerase chain reaction (PCR) testing for the diagnosis of Clostridioides difficile infection (CDI) detects the presence of the organism; a positive result therefore cannot differentiate between colonization and the pathogenic presence of the bacterium. This may result in overdiagnosis, overtreatment, and risking disruption of microbial flora, which may perpetuate the CDI cycle. Algorithm-based testing offers an advantage over PCR testing as it detects toxin, which allows differentiation between colonization and infection. Although previous studies have demonstrated the clinical utility of this testing algorithm in differentiating infection from colonization, it is unknown whether the test changes CDI treatment decisions. Our facility switched from PCR to an algorithm-based testing method for CDI in June 2018. Objective: In this study, we evaluated whether clinicians’ decisions to treat patients are impacted by a test result that implies colonization (GDH+/Tox−/PCR+ test), and we examined the impact of this decision on patient outcomes. Methods: This is a retrospective cohort study of inpatients with a positive C. diff test between June 2017 and June 2019. The primary outcome was the proportion of patients treated for CDI. We compared this outcome in 3 groups of patients: those with a positive PCR test (June 2017–June 2018), those who had a GDH+/Tox−/PCR+ or a GDH+/Tox+ test result (June 2018–June 2019). Secondary outcomes included toxic megacolon, critical care admission, and mortality in patients with GDH+/Tox−/PCR+ who were treated versus those who were untreated. Results: Of patients with a positive PCR test, 86% were treated with CDI-specific antibiotics, whereas 70.4% with GDH+/Tox+ and 29.25% with GDH+/Tox−/PCR+ result were treated (P < .0001). Mortality was not different between patients with GDH+/Tox−/PCR+ who were treated versus those who were untreated (2.7% vs 3.4%; P = .12), neither was critical care admission within 2 or 7 days of test result (2% vs 1.4%; P = .15) and (4.1% vs 5.4%, P = .39), respectively. There were no cases of toxic megacolon during the study period. Conclusions: The change to an algorithm-based C. difficile testing method had a significant impact on the clinicians’ decisions to treat patients with a positive test, as most patients with a GDH+/Tox−/PCR+ result did not receive treatment. These patients did not suffer more adverse outcomes compared to those who were treated, which has implications for testing practices. It remains to be explored whether clinicians are using clinical criteria to decide whether or not to treat patients with a positive algorithm-based test, as opposed to the more reflexive treatment of patients with a positive PCR test.Funding: NoneDisclosures: None


Stresses ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 30-47
Author(s):  
Maria Mortoglou ◽  
David Wallace ◽  
Aleksandra Buha Buha Djordjevic ◽  
Vladimir Djordjevic ◽  
E. Damla Arisan ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.


Sign in / Sign up

Export Citation Format

Share Document