scholarly journals Retail chicken meats as potential sources of Clostridioides difficile in Al-Jouf, Saudi Arabia

2021 ◽  
Vol 15 (07) ◽  
pp. 972-978
Author(s):  
Ahmed Elsayed Taha Attia

Introduction: Presence of Clostridioides difficile in stool of food birds and animals is a risk for contamination of their meats to become potential sources of human infection. The main virulence factors of C. difficile are its resistance to antibiotics, production of toxins and spores. As far as I know, this is the first study to evaluate C. difficile prevalence in chicken meats, its toxigenic activities and antibiotics sensitivity patterns in Al-Jouf, Saudi Arabia. Methodology: Totally, 250 raw chicken meat samples were examined. Standard microbiological and biochemical procedures were used for C. difficile isolation and identification. The suspected colonies were tested by L-proline and C. difficile test kits then confirmed by Vitek 2 compact system. Xpect C. difficile toxin A/B test was used to detect A/B toxins production. Antibiotics susceptibility patterns were detected by Epsilon tests. Results: C. difficile was isolated from 11/250 (4.40%) chicken meat samples; 5/65 (7.69%) legs, 3/65 (4.61%) thighs, 2/60 (3.33%) wings and 1/60 (1.67%) breasts (p = 0.4). All isolates were non-toxigenic. Although all isolates were vancomycin sensitive, some isolates were intermediate/resistant to metronidazole, tetracycline, clindamycin or moxifloxacin antibiotics with variable degrees. Conclusions: C. difficile might contaminate retail chicken meats. Although low level of contamination by non-toxigenic strains was detected, chicken meats should be investigated as C. difficile infection sources for humans especially elders, immune-compromised and long terms wide spectrum antibiotics-used persons. Decreased sensitivity of C. difficile to antibiotics is emerging.

2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Dhary A. Almashhadany

Food borne salmonellosis is a major public health problem worldwide. This study aimed to detect the occurrence and antibiotics sensitivity of Salmonella species in grilled chicken meat sold at retail outlets in Erbil City, Kurdistan, Iraq. Two hundred and twenty-five (225) samples were aseptically collected from central and suburb retail outlets. For isolation of salmonellae, samples were cultured on selective media and tested for their susceptibility to common antibiotics by disk diffusion assay. The results revealed that the overall prevalence of Salmonella among grilled chicken meat samples was 7.1%. The isolates belonged to eight different serotypes of Salmonella. These include S. Typhimurium, S. Tennessee, S. Newport, S. Enteritidis, S. Anatum, S. Arizona, S. Muenchen, and S. Montevideo. The antibiotic resistance profile revealed a total resistance to Levofloxacin and total sensitivity to Cefotaxime, Amoxicillin, and Cefadroxil. This resistance among Salmonella may pose a public health hazard that requires effective precautions and response.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1640
Author(s):  
Mahmoud Fayez ◽  
Waleed R. El-Ghareeb ◽  
Ahmed Elmoslemany ◽  
Saleem J. Alsunaini ◽  
Mohamed Alkafafy ◽  
...  

The present study aimed to determine the occurrence, genotypes, and antimicrobial resistance of Clostridium perfringens (C. perfringens) and Clostridioides difficile (C. difficile) in camel minced meat samples collected from small butcher shops and supermarkets in Al-Ahsa Governorate, Saudi Arabia. A total of 100 camel minced meat samples were randomly collected from small butcher’s shops (n = 50) and supermarkets (n = 50) in Al-Ahsa Governorate, Saudi Arabia. C. perfringens and C. difficile were isolated and identified using the VITEK-2 compact system and 16S rRNA gene amplification. Genotypes, toxin genes, and antimicrobial susceptibility of the isolates were determined. Moreover, ELISA was used to detect C. perfringens and C. difficile toxins. C. perfringens and C. difficile were isolated from 14% and 4% of the tested minced meat samples, respectively. Out of the 14 C. perfringens isolates, type A (64.3%), type B (7.1%), type C (21.5%), and type D (7.1%) were detected. However, out of the four C. difficile isolates, three (75%) were type A+B+ and one (25%) was type A−B+. None of the C. perfringens or C. difficile toxins were identified using ELISA. C. perfringens and C. difficile isolates exhibited a high rate of resistance to tetracycline (56% and 75%, respectively). However, all isolates were susceptible to amoxicillin-clavulanate. Multidrug resistance was observed in three (21.4%) C. perfringens and one (25%) C. difficile isolates. In conclusion, camel minced meat was contaminated with C. perfringens and C. difficile, which present a potential risk of food poisoning. The majority of the isolates were resistant to at least one antimicrobial, and some isolates were multidrug-resistant. Therefore, food safety standards and frequent inspections of abattoirs, small butcher shops, and supermarkets should be enforced.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 264
Author(s):  
Iván D. Regalado-Pineda ◽  
Rene Rodarte-Medina ◽  
Carolina N. Resendiz-Nava ◽  
Cinthia E. Saenz-Garcia ◽  
Pilar Castañeda-Serrano ◽  
...  

Worldwide, chicken meat is considered one of the main sources of Salmonella enterica in humans. To protect consumers from this foodborne pathogen, international health authorities recommend the establishment of continuous Salmonella surveillance programs in meat. However, these programs are scarce in many world regions; thus, the goal of the present study was to perform a longitudinal surveillance of S. enterica in chicken meat in Mexico. A total of 1160 samples were collected and analyzed monthly from 2016 to 2018 in ten chicken meat retailers (supermarkets and wet markets) located in central Mexico. The isolation and identification of S. enterica was carried out using conventional and molecular methods. Overall, S. enterica was recovered from 18.1% (210/1160) of the chicken meat samples. Remarkably, during the three years of evaluation, S. enterica was more prevalent (p < 0.0001) in supermarkets (27.2%, 158/580) than in wet markets (9.0%, 52/580). The study was 3.8 times more likely (odds ratio = 3.8, p < 0.0001) to recover S. enterica from supermarkets than wet markets. Additionally, a higher prevalence (p < 0.05) of this pathogen was observed during the spring, summer, autumn, and winter in supermarkets compared with wet markets. Moreover, the recovery rate of S. enterica from supermarkets showed a gradual increase from 20.78% to 42% (p < 0.0001) from 2016 to 2018. Interestingly, no correlation (p > 0.05) was observed between the S. enterica recovery rate in chicken meat and reported cases of Salmonella infections in humans. Higher levels of S. enterica in chicken meat retailed in supermarkets are not unusual; this phenomenon has also been reported in some European and Asian countries. Together, these results uncover an important health threat that needs to be urgently addressed by poultry meat producers and retailers.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Eduardus Bimo Aksono ◽  
Katty Hendriana Priscilla Riwu ◽  
A. T. Soelih Estoepangestie ◽  
Herinda Pertiwi

The objective of this study was to identify the phylogenetic analysis and antibiotic resistance of Listeria monocytogenes contaminating chicken meat in Surabaya. 60 chicken meat samples were collected from supermarkets, mobile vendors, and traditional markets in Surabaya. A selective medium is used for isolation and identification of Listeria monocytogenes by chopping 25 grams of the chicken meat and to put it into the sterilized Erlenmeyer flasks. Some methods were used for the identification procedures, such as biochemical and morphological tests, antibiotic resistance test, PCR, and sequencing; also a phylogenetic analysis was conducted by a neighbor-joining analysis using Genetix Mac ver 8.0 with hlyA genes of Listeria monocytogenes recorded in GenBank, such as Lineage I (KC808543), Lineage II (AY229462, AY229346, AY229499, and AY229404), Lineage III (KJ504139, HQ686043, KJ504116, and DQ988349), and Lineage IV (EU840690, EF030606). The result shows that the prevalence of L. monocytogenes in Surabaya contaminating the chicken meat samples from the supermarkets was 10% (2/20), from the mobile vendors was 0/20 (0%), and from the traditional markets was 5% (1/20). It was seen from the band at 456 bp fragment. Furthermore, three isolates found in Surabaya were included in the new lineages which were resistant to old-generation antibiotics such as sulfamethonazole-trimetophrim (SXT) and amoxyllin sulbactam (MAS), but they were still sensitive to new-generation antibiotics such as cefotaxime (CTX) and meropenem (MEM).


2004 ◽  
Vol 9 (2) ◽  
pp. 51
Author(s):  
A. Altalhi ◽  
M. Albashan

This study was carried out on I25 random samples of frozen meat collected aseptically from different shops and supermarkets distributed in Taif governorate. All samples were subjected to bacteriological examination for aerobic plate counts of Enterobactcriaceae, Staphylococcus aureus, and Lactobacillaceae, and for isolation and identification the strains isolated bacteriologically. The aerobic plate counts ranged from 3 x 10 4 to 107 cfu.g-1. The couan for Entcrobacteriaceae, Staphylococcus- aurcus, and Lactobacillaceae were (5 x IO 2to 2 x 1O 6cfu.g-1), (6 xl0 3 to 10 6 cfu.g-1), (6 x1O 3 to 3x lO 6cfu.g-1 ), respectively. The bacterial counts of frozen chicken meat ranged from (3xl0 3) to 20 x10 5/ cm-2. The number of strains isolated from frozen meat samples were 167, 67, 79, 76, and 87 for mutton, camel meats, imported beef, local chicken meats and imported chicken meat respectively. The percentages of bacterial isolates from frozen mutton were higher than those from frozen camel meat and beef. The frequency of isolation of different bacterial strains from imported frozen chicken meat was higher than that from local frozen chicken meat.


2018 ◽  
Vol 26 (2) ◽  
pp. 189-200
Author(s):  
Ioana Macovei ◽  
Daniela Lemeni ◽  
Roxana Șerban ◽  
Andreea Niculcea ◽  
Gabriel A. Popescu ◽  
...  

Abstract This study investigated the antibiotic susceptibility patterns and genetic resistance markers of 35 C. difficile strains isolated from patients with C. difficile infection. Vancomycin, metronidazole, tigecycline, teicoplanin, rifampicin, moxifloxacin, cefotaxime, tetracycline, erythromycin, clindamycin, chloramphenicol, linezolid and imipenem MICs were determined for toxigenic strains belonging to PCR ribotypes (PR) 012 (2), 014 (4), 017 (3), 018 (2), 027 (17), 046 (2), 087 (3) and 115 (2). Results showed vancomycin, metronidazole, tigecycline and teicoplanin to be active against all isolates. High resistance rates were noticed against cefotaxime (n = 35), clindamycin (n = 33), imipenem (n = 31), moxifloxacin (n = 25), erythromycin (n = 25) and rifampicin (n = 22). Linezolid-resistance was found in three isolates (PR 017/2, PR 012/1), showing complex resistance (7-9 antibiotics). PR 012, 017, 018, 027 and 046 isolates (n = 26) were resistant to 5-9 antibiotics. Twelve resistance profiles (2-9 antibiotics) were detected. Rifampicin-moxifloxacin-cefotaxime-erythromycin-clindamycin-imipenem-resistance was predominant, being expressed by 18 strains (PR 027/17, PR 018/1). PCR results suggested tetracycline-resistance to be induced by the gene tetM. Three tetM-positive isolates (PRs 012, 046), were also tndX-positive, suggesting the presence of a Tn5397-like element. Only two MLSB-resistant strains (PR 012) had the ermB gene and chloramphenicol-resistance determinant catD was not detected, leaving room for further investigating resistance mechanisms. Multidrug resistance could be attributed to most analysed strains, underlining, once more, the impact of wide-spectrum antimicrobial over prescription, still a tendency in our country, on transmission of antimicrobial resistance and emergence of epidemic C. difficile strains generating outbreaks.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1647
Author(s):  
Anna Kaczmarek ◽  
Małgorzata Muzolf-Panek

The aim of the study was to develop predictive models of thiol group (SH) level changes in minced raw and heat-treated chicken meat enriched with selected plant extracts (allspice, basil, bay leaf, black seed, cardamom, caraway, cloves, garlic, nutmeg, onion, oregano, rosemary, and thyme) during storage at different temperatures. Meat samples with extract addition were stored under various temperatures (4, 8, 12, 16, and 20 °C). SH changes were measured spectrophotometrically using Ellman’s reagent. Samples stored at 12 °C were used as the external validation dataset. SH content decreased with storage time and temperature. The dependence of SH changes on temperature was adequately modeled by the Arrhenius equation with average high R2 coefficients for raw meat (R2 = 0.951) and heat-treated meat (R2 = 0.968). Kinetic models and artificial neural networks (ANNs) were used to build the predictive models of thiol group decay during meat storage. The obtained results demonstrate that both kinetic Arrhenius (R2 = 0.853 and 0.872 for raw and cooked meat, respectively) and ANN (R2 = 0.803) models can predict thiol group changes in raw and cooked ground chicken meat during storage.


Sign in / Sign up

Export Citation Format

Share Document