Comparative analysis of algal biodiversity in the rivers of Israel

2011 ◽  
Vol 6 (2) ◽  
pp. 246-259 ◽  
Author(s):  
Sophia Barinova ◽  
Alexey Petrov ◽  
Eviatar Nevo

AbstractComparative analysis of algal communities in the rivers of Israel was completed to highlight the influence of environmental variables on biodiversity. The study revealed that 671 species of algae and cyanobacteria belonging to nine taxonomic divisions were present during 2002–2009 in the Yarqon, Alexander, Hadera, Qishon, Oren, Lower and Upper Jordan, and Zin rivers. The species richness of each river was evaluated by taxonomic structural comparison, geobotanical, hierarchical cluster analysis, and the degree of relatedness for different levels of taxonomic resolution. The analysis revealed close similarity of the Upper Jordan and Oren rivers. The average taxonomic distinctness index showed that the Yarqon, Oren, Upper Jordan, and Qishon communities were partly degraded due to permanent environmental disturbances. The variation in taxonomic distinctness index showed that the Alexander, Yarqon and Hadera communities were formed not only due to anthropogenic factors but also through long-term climatic impact. The most abundant indicator species inhabit low streaming and standing alkaline waters of medium salinity and low to medium organic pollution. The statistical approaches allowed discrimination between climatic and anthropogenic factors that impact upon the riverine biodiversity in semi-arid environments. Analysis shows the influence of anthropogenic factors was strongly modulated by climatic impacts causing a marked decease of species richness from north to south.

Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 583
Author(s):  
Sophia Barinova ◽  
Alla Alster

Lake Hula, the core of one of the most extensive wetland complexes in the Eastern Mediterranean, was drained in 1951–1958. However, about 350 hectares of papyrus marshes were allocated in the southwestern part of the previous lake and became the Hula Nature Reserve status, the first of two wetlands in Israel included in the Ramsar List of Wetlands of International Importance. The list of algae and cyanobacteria species of Lake Hula was compiled by us for the first time based on data from publications of 1938–1958, as well as our research in the Hula Nature Reserve, obtained within the framework of the monitoring program for 2007–2013. The list includes 225 species and intraspecies of algae and cyanobacteria belonging to eight phyla. The dynamics of the species richness of algae and cyanobacteria flora for 1938–2013 are shown. Species-bioindicators of water quality have been identified, and the change in their composition by ecological groups for a period of about a hundred years has been shown. Based on the species richness of algae communities, water quality indices were calculated with particular attention to changes in trophic status during the study period. The algae flora of Lake Hula and Hula Nature Reserve was found to be similar, but bioindication has revealed an increase in salinity and organic pollution in recent years.


Diversity ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 207
Author(s):  
Olga Skorobogatova ◽  
Elvira Yumagulova ◽  
Tatiana Storchak ◽  
Sophia Barinova

Algal diversity in the bogs of the Ershov oil field of the Khanty-Mansiysk Autonomous Okrug–Yugra (KMAO-Yugra) with the gradient of oil pollution between 255 and 16,893 mg kg−1 has been studied with the help of bioindication methods and ecological mapping. Altogether 91 species, varieties, and forms of algae and cyanobacteria from seven divisions have been revealed for the first time from seven studied sites on the bogs. Charophyta algae prevail followed by diatoms, cyanobacteria, and euglenoids. The species richness and abundance of algae were maximal at the control site, with charophytic algae prevailing. The species richness of diatoms decreased in the contaminated area, but cyanobacteria were tolerated in a pH which varied between 4.0 and 5.4. Euglenoid algae survived under the influence of oil and organic pollution. Bioindication revealed a salinity influence in the oil-contaminated sites. A comparative floristic analysis shows a similarity in communities at sites surrounding the contaminated area, the ecosystems of which have a long-term rehabilitation period. The percent of unique species was maximal in the control site. Bioindication results were implemented for the first time in assessing the oil-polluted bogs and can be recommended as a method to obtain scientific results visualization for decision-makers and for future pollution monitoring.


Parasitology ◽  
2004 ◽  
Vol 128 (6) ◽  
pp. 671-682 ◽  
Author(s):  
J. L. LUQUE ◽  
D. MOUILLOT ◽  
R. POULIN

Recent studies of the forces behind the diversification of parasite assemblages have shed light on many aspects of parasite biodiversity. By using only parasite species richness as their measure of diversity, however, previous investigations have ignored the relatedness among parasite species and the taxonomic structure of the assemblages, which contain much information about their evolutionary origins. Here, we performed a comparative analysis across 50 species of fish from the coast of Brazil; we evaluated the effects of several host traits (body size, social behaviour, feeding habits, preference for benthicvs. pelagic habitats, depth range, and ability to enter brackish waters) on the diversity of their assemblages of metazoan parasites. As measures of diversity, we used parasite species richness, as well as the average taxonomic distinctness of the assemblage and its variance; the latter measures are based on the average taxonomic distance between any two parasite species in an assemblage. Unlike parasite species richness, taxonomic distinctness was unaffected by the number of host individuals examined per species. Fish body length proved to be the main predictor of parasite species richness, even when controlling for the confounding influences of host phylogeny and sampling effort, although it did not correlate with measures of parasite taxonomic distinctness. Predatory fish also had higher parasite species richness than planktivores, but this trend could not be confirmed using phylogenetically independent contrasts between host taxa. The main host feature associated with the taxonomic diversity of parasites was schooling behaviour, with schooling fish having more taxonomically diverse parasite assemblages than those of their non-schooling relatives. When focusing on endoparasite species only, both predatory feeding habits and a broad depth range were associated with the taxonomic distinctness of parasites. Our results suggest that certain host traits (i.e. body size) determine how many parasite species a host can accumulate over evolutionary time, whereas different host features influence the processes causing the taxonomic diversification of parasite assemblages.


2019 ◽  
Vol 26 (4) ◽  
pp. 292-302
Author(s):  
K. N. Ivicheva ◽  
N. N. Makarenkova ◽  
V. L. Zaytseva ◽  
D. A. Philippov

Biodiversity of aquatic organisms is formed under the influence of not only natural, but also anthropogenic factors. In this work, the influence of the flow velocity, river size, flow regulation and urbanization on various groups of aquatic organisms was studied in several lowland rivers. The study was conducted in 2013 on six tributaries of the Upper Sukhona River. Five sampling sites were in different parts of the Vologda River and five sites on small rivers, Losta, Lukhta, Komya, Chernyj Shingar, and Belyj Shingar (one site per river). Phytoplankton, zooplankton and zoobenthos were sampled six times, from April to October, and macrophytes were studied in August. In total, 469 species of aquatic organisms were found in the tributaries of the Upper Sukhona River, belonging to the following phyla: Cyanophyta (5 species), Chrysophyta (8), Bacillariophyta (62), Xanthophyta (1), Cryptophyta (10), Dinophyta (4), Euglenophyta (12), Chlorophyta (17), Streptophyta (1), Bryophyta (2), Marchantiophyta (3), Equisetophyta (1), Magnoliophyta (63), Rotifera (22), Cnidaria (1), Platyhelmintes (1), Annelida (29), Mollusca (33), Arthropoda (194). The maximum number of species was found in the Vologda River, the largest of all the tributaries. The number of zoobenthos species was similar at different sites in the Vologda River and in the small rivers. The number of species of other groups of aquatic organisms in the small rivers was lower than those registered in the Vologda River. The greatest number of macrophyte and zoobenthos species was recorded in the Upper Vologda River and Belyj Shingar River, where the flow is strong all the year round. The greatest number of phyto- and zooplankton species was found at the extra-city sites where current is almost absent. In the dam backwater, species richness was higher than that registered downstream of the dam. At the same time, the species richness of macrophytes and zoobenthos in the dam backwater was lower. The smallest number of species was found in the Vologda River, downstream of the city of Vologda. Decreases in the species richness and Shannon’s biodiversity index were witnessed in the Vologda River city site and in the small rivers, as they get closer to the city. Cluster analyses performed for the studied groups of aquatic organisms showed dissimilar results; however, the studied sites on the Vologda River having the highest anthropogenic load formed a cluster. Aquatic organisms of the Upper Sukhona tributaries experience both natural (flow velocity and size of the watercourse) and anthropogenic factors (proximity to the city and flow regulation).


2021 ◽  
Vol 193 (10) ◽  
Author(s):  
Melinda Pálinkás ◽  
Levente Hufnagel

AbstractWe studied the patterns of pre-collapse communities, the small-scale and the large-scale signals of collapses, and the environmental events before the collapses using four paleoecological and one modern data series. We applied and evaluated eight indicators in our analysis: the relative abundance of species, hierarchical cluster analysis, principal component analysis, total abundance, species richness, standard deviation (without a rolling window), first-order autoregression, and the relative abundance of the dominant species. We investigated the signals at the probable collapse triggering unusual environmental events and at the collapse zone boundaries, respectively. We also distinguished between pulse and step environmental events to see what signals the indicators give at these two different types of events. Our results show that first-order autoregression is not a good environmental event indicator, but it can forecast or indicate the collapse zones in climate change. The rest of the indicators are more sensitive to the pulse events than to the step events. Step events during climate change might have an essential role in initiating collapses. These events probably push the communities with low resilience beyond a critical threshold, so it is crucial to detect them. Before collapses, the total abundance and the species richness increase, the relative abundance of the species decreases. The hierarchical cluster analysis and the relative abundance of species together designate the collapse zone boundaries. We suggest that small-scale signals should be involved in analyses because they are often earlier than large-scale signals.


1995 ◽  
Vol 73 (6) ◽  
pp. 943-953 ◽  
Author(s):  
Pampang Parikesit ◽  
Douglas W. Larson ◽  
Uta Matthes-Sears

Plant community structure and soil characteristics were quantitatively studied along forested cliff edges of the Niagara Escarpment in southern Ontario, Canada. The objective of the study was to try to differentiate between the effects of two gradients on vegetation structure: the environmental gradient between the cliff edge and dense forest, and an anthropogenic gradient, generated by the presence of major hiking trails parallel to the cliff edges. Species frequencies were determined along 69 transects distributed over eight sites with different amounts of past and present trampling disturbance. The data were analyzed using cluster and ordination analysis as well as analyses of variance. The results showed that soil characteristics were the major influence organizing the vegetation of cliff-edge forests and that soil properties and plant community structure were more strongly influenced by anthropogenic factors than by the environmental gradient between cliff edge and forest. Trampled plots had some properties in common with cliff-edge plots. Species richness was highest at intermediate trail-use levels; abandonment of heavily disturbed trails resulted in the restoration of species richness, but most new colonizing plants were disturbance-tolerant ruderals. Soil properties did not completely recover even after 10 years of trail abandonment. The results suggest that the current use of cliff edges along the Niagara Escarpment is nonsustainable, and reversing its effects on cliff-edge forest structure may take a considerable amount of time. Key words: Niagara Escarpment, plant community ecology, disturbance, trampling, cluster analysis, ordination.


1992 ◽  
Vol 6 ◽  
pp. 13-13
Author(s):  
Catherine Badgley ◽  
Anna Kay Behrensmeyer ◽  
William S. Bartels ◽  
Thomas M. Bown

The Paleocene to early Eocene sequence of Wyoming-Montana and the Miocene to Pleistocene Siwalik record of Pakistan are exceptionally long, continental sequences, each containing a rich and well documented fossil record, especially of mammals. The two sequences are broadly similar in tectonic setting and sedimentary environment, in duration and facies changes, and in diversity of fossils. Each contains a paleoclimatic record in stable isotopes and, in the Paleogene, floras. Comparison of these two sequences has focused our attention on the interaction of tectonic, climatic, sedimentologic, and taphonomic factors that produce a particular fossil record and on the co-occurring ecological and evolutionary changes that result in a historical series of biotas, each the product of local and global events.In the Paleogene record, the geographic scope of the record encompasses much of the floodbasin, and the spatial distribution of paleoenvironments formed fairly straightforward gradients from channel to distal floodplain. The Siwalik record has a smaller window onto a larger, heterogeneous fluvial system often with multiple, contemporaneous river systems that differ in magnitude. The spatial distribution of paleoenvironments was a mosaic without long proximal to distal gradients. In both records, major facies changes are correlated with striking changes in fossil productivity.The overall pattern of fossil preservation by depositional environment differs substantially in the two areas. The Siwalik sequence has a greater variety of depositional environments that produce fossils throughout the section. The primary productive environment in the older part of the Paleocene record declined in productivity upsection, while a previously unproductive facies became the major source of fossils. Much of the record represents attritional accumulation in each area, but a significant portion is transported. The taphonomic processes that created fossil concentrations led to better taxonomic resolution for most Paleogene localities than in most Siwalik localities.In each record, both aquatic and terrestrial components of the vertebrate faunas are correlated with facies. Since facies varied in productivity over time, some changes in faunal composition may have resulted from change in the prevalence or productivity of particular facies. At least one faunal turnover coincided with major facies changes in each sequence.For mammals in each record, immigration rather than speciation in situ was the primary means of appearance of new species. Episodes of immigration were not closely followed by extinctions of resident species. Mean species longevity appears to have been more than twice as great in the Neogene than in the Paleogene record. Changes in faunal composition and species richness occurred during times of global climatic change; causal connections are still being explored. Changes in species richness did not track changes in relative abundance of taxa or changes in size within lineages or faunas. In terms of guild structure, the herbivore guild had high relative generic diversity through most of both sequences. The Paleogene record had a more even distribution of taxa in the five principal guilds, while the Siwalik record was heavily dominated by the herbivore guild. Size distributions differed substantially, reflecting the early and late windows into the mammalian radiation, rather than sampling bias.


2005 ◽  
Vol 50 (3) ◽  
pp. 978-986 ◽  
Author(s):  
Jani Heino ◽  
Janne Soininen ◽  
Jyrki Lappalainen ◽  
Risto Virtanen

Sign in / Sign up

Export Citation Format

Share Document