Catalytic gasification of pyrolytic oil from tire pyrolysis process

2013 ◽  
Vol 67 (12) ◽  
Author(s):  
Lukáš Gašparovič ◽  
Lukáš Šugár ◽  
Ľudovít Jelemenský ◽  
Jozef Markoš

AbstractThe present work deals with thermo-catalytic decomposition of pyrolytic oil from the scrap tire pyrolysis process. Such oil can be used as a model tar in an experimental study of tar removal from pyrolysis or gasification process gas. Several experiments under different conditions were carried out in order to determine conditions of the gasification and pyrolysis processes. Influence of the oil to steam ratio, temperature, and of the presence of dolomite catalyst was studied. Addition of water steam has positive effect on the hydrogen content in the outgoing process gas as well as on the conversion of the injected oil. The catalytic gasification experiment in a quasi steady state produced process gas with the composition: 61 mole % of H2, 6.4 mole % of CO, and 11.7 mole % of CH4. At temperatures lower than 800°C, the amount of process gas decreased resulting also in a decrease of the oil conversion. A comparison of gasification experiments using fresh calcined dolomite with experiments proceeding with regenerated dolomite was done under the same conditions. There was a decrease in the process gas volumetric flow when regenerated catalyst was used.

2019 ◽  
Vol 797 ◽  
pp. 102-107
Author(s):  
Mizan Qistina Saharuddin ◽  
Sharifah Aishah Syed A. Kadir ◽  
Rusmi Alias

Gasification is raised as the most promising technologies of municipal solid waste (MSW) removal as well as energy recovery. The principal problem related with the gasification process is the high amount of tar released during the gasification process that causes environmental and operational problems. The purpose of this study is to investigate the performance of MSW gasification using tyre char as an alternative option for catalytic gasification to produce tar free clean gas. Catalytic performance of tyre char was compared with performance of MSW gasification alone without the tyre char in a bench scale downdraft reactor. The waste tyre char removed 80% of tars in syngas at 700 °C. Analysis of the syngas compositions indicated that concentration of H2and CO were significantly increased. Therefore, it was concluded that chars especially tyre char can be an effective and inexpensive catalyst for tar removal and syngas production of MSW gasification.


Author(s):  
Marian Wiatowski ◽  
Roksana Muzyka ◽  
Krzysztof Kapusta ◽  
Maciej Chrubasik

AbstractIn this study, the composition of tars collected during a six-day underground coal gasification (UCG) test at the experimental mine ‘Barbara’ in Poland in 2013 was examined. During the test, tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven (coal) tar. The obtained results were compared with each other and with the data for coal tar. As gasification progressed, a decreasing trend in the water content and an increasing trend in the ash content were observed. The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline. All tested samples were characterized by very high distillation losses, while for samples starting from the third day of gasification, a clear decrease in losses was visible. A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar. The content of polycyclic aromatic hydrocarbons (PAHs) in UCG tars is several times lower than that in coal tar. No light monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes—BTEX) were found in the analysed tars, which results from the fact that these compounds, due to their high volatility, did not separate from the process gas in the liquid product separator.


2021 ◽  
Vol 11 (10) ◽  
pp. 4374
Author(s):  
Waldemar Ścierski

The most advantageous way of managing plastics, according to circular economy assumptions, is recycling, i.e., reusing them. There are three types of plastics recycling: mechanical, chemical and energy recycling. The products of the pyrolysis process can be used for both chemical and energy recycling. Possibilities of further use of pyrolysis products depend on their physicochemical parameters. Getting to know these parameters was the aim of the research, some of which are presented in this article. The paper presents the research position for conducting the pyrolysis process and discusses the results of research on pyrolysis products of waste plastics. The process was conducted to obtain the temperature of 425 °C in the pyrolytic chamber. Such a value was chosen on the basis of my own previous research and literature analysis. The focus was on the migration of sulfur and nitrogen, as in some processes these substances may pose a certain problem. Studies have shown high possibilities of migration of these elements in products of pyrolysis process. It has been shown that the migration of sulfur is similar in the case of homogeneous and mixed waste plastics—it immobilizes mainly in pyrolytic oil. Different results were obtained for nitrogen. For homogeneous plastics, nitrogen immobilizes mainly in char and oil, whereas for mixed plastics, nitrogen immobilizes in pyrolytic gas.


2014 ◽  
Vol 156 ◽  
pp. 291-296 ◽  
Author(s):  
Qinglong Xie ◽  
Fernanda Cabral Borges ◽  
Yanling Cheng ◽  
Yiqin Wan ◽  
Yun Li ◽  
...  

2015 ◽  
Vol 787 ◽  
pp. 67-71
Author(s):  
R.M. Alagu ◽  
E. Ganapathy Sundaram

Pyrolysis process in a fixed bed reactor was performed to derive pyrolytic oil from groundnut shell. Experiments were conducted with different operating parameters to establish optimum conditions with respect to maximum pyrolytic oil yield. Pyrolysis process was carried out without catalyst (thermal pyrolysis) and with catalyst (catalytic pyrolysis). The Kaolin is used as a catalyst for this study. The maximum pyrolytic oil yield (39%wt) was obtained at 450°C temperature for 1.18- 2.36 mm of particle size and heating rate of 60°C/min. The properties of pyrolytic oil obtained by thermal and catalytic pyrolysis were characterized through Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques to identify the functional groups and chemical components present in the pyrolytic oil. The study found that catalytic pyrolysis produce more pyrolytic oil yield and improve the pH value, viscosity and calorific value of the pyrolytic oil as compared to thermal pyrolysis.


2012 ◽  
Vol 557-559 ◽  
pp. 2189-2196
Author(s):  
Hui Feng Yuan ◽  
De Min He ◽  
Jun Guan ◽  
Qiu Min Zhang

Simulation and study on Texaco gasification of semi-cokes prepared by DG coal pyrolysis process has been carried out by using Aspen Plus. The possibility that pyrolytic semi-cokes is used as the raw materials is discussed. Sensitivity study runs are performed to analyze the effects of oxygen-to-char mass ratio, mass percentage of char in char water slurry and gasification pressure on the gasification process. Simulations indicate that molar percent content of effective components (CO+H2) reaches as high as 67.94% under operational conditions which oxygen-to-char mass ratio is 0.75; char water slurry concentration is 62.5% and gasification pressure is 4.0MPa. So semi-cokes made by DG coal pyrolysis process is the excellent raw materials for gasification. Sensitivity analysis show that oxygen-to-char mass ratio and mass percentage of char in char water slurry are the main factors that affect the gasification process; gasification pressure has little effect on the results of char gasification.


2019 ◽  
Vol 21 (4) ◽  
pp. 51-57 ◽  
Author(s):  
Katarzyna Śpiewak ◽  
Grzegorz Czerski ◽  
Agnieszka Sopata

Abstract The aim of this study was to analyse the steam gasification process of ‘Janina’ coal with and without Na-, K- and Ca-catalysts. The catalysts were physically mixed with the coal due to the simplicity of this method, short time of execution and certainty that the amount of catalyst is exactly as the adopted one. The isothermal measurements were performed at 800, 900 and 950°C and a pressure of 1 MPa using thermovolumetric method. The obtained results enabled assessment of the effect of analysed catalysts on the process at various temperatures by determination of: i) carbon conversion degree; ii) yield and composition of the resulting gas; and iii) kinetics of formation reactions of main gas components – CO and H2. The addition of catalysts, as well as an increase in operating temperature, had a positive effect on the coal gasification process – reactions rates increased, and the process time was reduced.


2016 ◽  
Vol 18 (3) ◽  
pp. 97-102 ◽  
Author(s):  
Stanisław Porada ◽  
Andrzej Rozwadowski ◽  
Katarzyna Zubek

Abstract One of the promising processes, belonging to the so-called clean coal technologies, is catalytic coal gasification. The addition of a catalyst results in an increased process rate, in which synthesis gas is obtained. Therefore, the subject of this research was catalytic gasification of low-ranking coal which, due to a high reactivity, meets the requirements for fuels used in the gasification process. Potassium and calcium cations in an amount of 0.85, 1.7 and 3.4% by weight were used as catalytically active substances. Isothermal measurements were performed at 900°C under a pressure of 2 MPa using steam as a gasifying agent. On the basis of kinetic curves, the performance of main gasification products as well as carbon conversion degree were determined. The performed measurements allowed the determination of the type and amount of catalyst that ensure the most efficient gasification process of the coal ‘Piast’ in an atmosphere of steam.


Sign in / Sign up

Export Citation Format

Share Document