Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic Arabidopsis plants

Biologia ◽  
2009 ◽  
Vol 64 (6) ◽  
Author(s):  
Chang-Tao Wang ◽  
Yin-Mao Dong

AbstractC-repeat/dehydration-responsive element binding factors (CBF/DREBs), belonging to the AP2/ERF superfamily, play a vital regulatory role in abiotic stress responses in plants. The ZmDBP3 gene, a member of the A-1 subgroup of the CBF/DREB subfamily, was isolated from maize seedlings. The predicted ZmDBP3 protein contained a putative nuclear localization signal and an activation region. As a trans-acting factor, the ZmDBP3 protein accumulated in the nucleus in a subcellular localization assay, and activated CRT/DRE-containing genes under normal growth conditions in transgenic Arabidopsis plants. ZmDBP3 transcription was highly activated by cold and moderately by salt. Overexpression of ZmDBP3 improved drought and cold stress tolerance in transgenic Arabidopsis plants. These results suggested that ZmDBP3 produces a CRT/DRE-binding transcription factor and may have an important role in improving drought and cold tolerance in plants.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 697
Author(s):  
Juan Mao ◽  
Wenxin Li ◽  
Jing Liu ◽  
Jianming Li

The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pajaree Sonsungsan ◽  
Pheerawat Chantanakool ◽  
Apichat Suratanee ◽  
Teerapong Buaboocha ◽  
Luca Comai ◽  
...  

Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of ‘Luang Pratahn’ rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan M. Doner ◽  
Damien Seay ◽  
Marina Mehling ◽  
Siqi Sun ◽  
Satinder K. Gidda ◽  
...  

Lipid droplets (LDs) are neutral-lipid-containing organelles found in all kingdoms of life and are coated with proteins that carry out a vast array of functions. Compared to mammals and yeast, relatively few LD proteins have been identified in plants, particularly those associated with LDs in vegetative (non-seed) cell types. Thus, to better understand the cellular roles of LDs in plants, a more comprehensive inventory and characterization of LD proteins is required. Here, we performed a proteomics analysis of LDs isolated from drought-stressed Arabidopsis leaves and identified EARLY RESPONSIVE TO DEHYDRATION 7 (ERD7) as a putative LD protein. mCherry-tagged ERD7 localized to both LDs and the cytosol when ectopically expressed in plant cells, and the protein’s C-terminal senescence domain (SD) was both necessary and sufficient for LD targeting. Phylogenetic analysis revealed that ERD7 belongs to a six-member family in Arabidopsis that, along with homologs in other plant species, is separated into two distinct subfamilies. Notably, the SDs of proteins from each subfamily conferred targeting to either LDs or mitochondria. Further, the SD from the ERD7 homolog in humans, spartin, localized to LDs in plant cells, similar to its localization in mammals; although, in mammalian cells, spartin also conditionally localizes to other subcellular compartments, including mitochondria. Disruption of ERD7 gene expression in Arabidopsis revealed no obvious changes in LD numbers or morphology under normal growth conditions, although this does not preclude a role for ERD7 in stress-induced LD dynamics. Consistent with this possibility, a yeast two-hybrid screen using ERD7 as bait identified numerous proteins involved in stress responses, including some that have been identified in other LD proteomes. Collectively, these observations provide new insight to ERD7 and the SD-containing family of proteins in plants and suggest that ERD7 may be involved in functional aspects of plant stress response that also include localization to the LD surface.


2018 ◽  
Vol 22 (03) ◽  
pp. 77-81
Author(s):  
Otgonsuvd B ◽  
Ouyngerel Sh ◽  
Altanzaya T

Orostachys spinosa L. is a succulent plant native to predominantly East Asia. The objective of this study was to identify physiological and morphological responses of O. spinosa L. species to cold, drought stress in laboratory conditions. Exposure of plants to a drought stress for 28 days slightly decreased the photochemical efficiency of PSII and the Fv/Fm values were 10-15% lower (0.75±0.01) compared with the control plants (0.85±0.01). For cold treatments, plants were exposed to 4°C for 60 days and for recovery transferred to normal growth conditions for 14 days. Fv/Fm photochemical efficiency of PSII can be used to monitor PSII photoinhibition. This parameter describes the efficiency of the electron transfer within PSII.The results of this study demonstrated that O. spinosa L. plants were better adapted to cold and drought conditions as they showed less visible symptoms and highest Fv/Fm levels at the long time chilling and drought stress.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1323-1334 ◽  
Author(s):  
John Yochem ◽  
Trent Gu ◽  
Min Han

Abstract A fusion of the sur-5 protein to the green fluorescent protein containing a nuclear localization signal is demonstrated as a marker for genetic mosaic analysis in the nematode Caenorhabditis elegans. Because of an extensive accumulation of bright fluorescence in many nuclei, normal growth plates, each containing hundreds of worms, can be rapidly screened with a dissecting microscope for rare mosaic individuals. As the marker can also be used to detect transgenic worms, the construction of strains for mosaic analyses can be minimized. In the course of examining rare mosaic animals, an unexpected pattern of fluorescence was noticed for hyp6, a syncytial component of the hypodermis, which indicated that the marker may serve as a means of assessing cellular fusions during development. Immunofluorescent staining of adherens junctions confirmed a postembryonic fusion of hyp6 with hyp7, the major syncytium of the hypodermis.


2018 ◽  
Author(s):  
Tara A. Enders ◽  
Susan St. Dennis ◽  
Justin Oakland ◽  
Steven T. Callen ◽  
Malia A. Gehan ◽  
...  

AbstractIncreasing the tolerance of maize seedlings to low temperature episodes could mitigate the effects of increasing climate variability on yield. To aid progress toward this goal, we established a growth chamber-based system for subjecting seedlings of 40 maize inbred genotypes to a defined, temporary cold stress while collecting digital profile images over a 9-day time course. Image analysis performed with PlantCV software quantified shoot height, shoot area, 14 other morphological traits, and necrosis identified by color analysis. Hierarchical clustering of changes in growth rates of morphological traits and quantification of leaf necrosis over two time intervals resulted in three clusters of genotypes, which are characterized by unique responses to cold stress. For any given genotype, the set of traits with similar growth rates is unique. However, the patterns among traits are different between genotypes. Cold sensitivity was not correlated with the latitude where the inbred varieties were released suggesting potential further improvement for this trait. This work will serve as the basis for future experiments investigating the genetic basis of recovery to cold stress in maize seedlings.


Plant Direct ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. e00104 ◽  
Author(s):  
Tara A. Enders ◽  
Susan St. Dennis ◽  
Justin Oakland ◽  
Steven T. Callen ◽  
Malia A. Gehan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document