scholarly journals Identification of Key Genes in ‘Luang Pratahn’, Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks

2021 ◽  
Vol 12 ◽  
Author(s):  
Pajaree Sonsungsan ◽  
Pheerawat Chantanakool ◽  
Apichat Suratanee ◽  
Teerapong Buaboocha ◽  
Luca Comai ◽  
...  

Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of ‘Luang Pratahn’ rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.

2017 ◽  
Vol 44 (5) ◽  
pp. 473 ◽  
Author(s):  
Jesper T. Pedersen ◽  
Michael Palmgren

The purpose of this minireview is to discuss the feasibility of creating a new generation of salt-tolerant plants that express Na+/K+-ATPases from animals or green algae. Attempts to generate salt-tolerant plants have focussed on increase the expression of or introducing salt stress-related genes from plants, bryophytes and yeast. Even though these approaches have resulted in plants with increased salt tolerance, plant growth is decreased under salt stress and often also under normal growth conditions. New strategies to increase salt tolerance are therefore needed. Theoretically, plants transformed with an animal-type Na+/K+-ATPase should not only display a high degree of salt tolerance but should also reduce the stress response exhibited by the first generation of salt-tolerant plants under both normal and salt stress conditions. The biological feasibility of such a strategy of producing transgenic plants that display improved growth on saline soil but are indistinguishable from wild-type plants under normal growth conditions, is discussed.


2021 ◽  
Vol 22 (7) ◽  
pp. 3475
Author(s):  
Yi Zhang ◽  
Jianzi Huang ◽  
Qiongzhao Hou ◽  
Yujuan Liu ◽  
Jun Wang ◽  
...  

Salt stress is a major increasing threat to global agriculture. Pongamia (Millettia pinnata), a semi-mangrove, is a good model to study the molecular mechanism of plant adaptation to the saline environment. Calcium signaling pathways play critical roles in the model plants such as Arabidopsis in responding to salt stress, but little is known about their function in Pongamia. Here, we have isolated and characterized a salt-responsive MpCML40, a calmodulin-like (CML) gene from Pongamia. MpCML40 protein has 140 amino acids and is homologous with Arabidopsis AtCML40. MpCML40 contains four EF-hand motifs and a bipartite NLS (Nuclear Localization Signal) and localizes both at the plasma membrane and in the nucleus. MpCML40 was highly induced after salt treatment, especially in Pongamia roots. Heterologous expression of MpCML40 in yeast cells improved their salt tolerance. The 35S::MpCML40 transgenic Arabidopsis highly enhanced seed germination rate and root length under salt and osmotic stresses. The transgenic plants had a higher level of proline and a lower level of MDA (malondialdehyde) under normal and stress conditions, which suggested that heterologous expression of MpCML40 contributed to proline accumulation to improve salt tolerance and protect plants from the ROS (reactive oxygen species) destructive effects. Furthermore, we did not observe any measurable discrepancies in the development and growth between the transgenic plants and wild-type plants under normal growth conditions. Our results suggest that MpCML40 is an important positive regulator in response to salt stress and of potential application in producing salt-tolerant crops.


2021 ◽  
Author(s):  
Junliang Yin ◽  
Yike Liu ◽  
Lin Lu ◽  
Jian Zhang ◽  
Shaoyu Chen ◽  
...  

Abstract As a newly characterized class of noncoding RNAs, circular RNAs (circRNAs) have been identified in many plant species, and play important roles in plant stress responses. However, little is known about how salt stress mediates the expression of circRNAs in rice. In this study, we identified circRNAs from root tissues of salt-susceptible recipient cultivar 93-11 and salt-tolerant introgression line 9L136. A total of 190 circRNAs were identified. Among them, 93 circRNAs were differentially expressed under salt stress in 93-11 (36 up- and 57 down-regulated) and 95 in 9L136 (46 up- and 49 down-regulated). Salt stress significantly decreased the average expression level of circRNAs in 93-11, but circRNA expression levels were slightly increased in 9L136, suggesting that circRNAs had different response patterns in these two cultivars. Function annotation and enrichment analysis indicated that, through cis-regulation and circRNA-miRNA-mRNA network regulation, those induced circRNAs were commonly involved in transcription, signal transduction, ion transportation, and secondary metabolism. Compared to 93-11, salt-induced circRNAs in line 9L136 targeted more stress response genes participating in transcription regulation, ion transportation, and signal transduction, which may contribute to the salt tolerance of 9L136. Summarily, this study revealed the common response of rice circRNAs to salt stress, and the possible circRNA-related salt tolerance mechanisms of 9L136.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 697
Author(s):  
Juan Mao ◽  
Wenxin Li ◽  
Jing Liu ◽  
Jianming Li

The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanyong Li ◽  
Xiaoqian Tang ◽  
Xiuyan Yang ◽  
Huaxin Zhang

AbstractNitraria sibirica Pall., a typical halophyte that can survive under extreme drought conditions and in saline-alkali environments, exhibits strong salt tolerance and environmental adaptability. Understanding the mechanism of molecular and physiological metabolic response to salt stress of plant will better promote the cultivation and use of halophytes. To explore the mechanism of molecular and physiological metabolic of N. sibirica response to salt stress, two-month-old seedlings were treated with 0, 100, and 400 mM NaCl. The results showed that the differentially expressed genes between 100 and 400 mmol L−1 NaCl and unsalted treatment showed significant enrichment in GO terms such as binding, cell wall, extemal encapsulating structure, extracellular region and nucleotide binding. KEGG enrichment analysis found that NaCl treatment had a significant effect on the metabolic pathways in N. sibirica leaves, which mainly including plant-pathogen interaction, amino acid metabolism of the beta alanine, arginine, proline and glycine metabolism, carbon metabolism of glycolysis, gluconeogenesis, galactose, starch and sucrose metabolism, plant hormone signal transduction and spliceosome. Metabolomics analysis found that the differential metabolites between the unsalted treatment and the NaCl treatment are mainly amino acids (proline, aspartic acid, methionine, etc.), organic acids (oxaloacetic acid, fumaric acid, nicotinic acid, etc.) and polyhydric alcohols (inositol, ribitol, etc.), etc. KEGG annotation and enrichment analysis showed that 100 mmol L−1 NaCl treatment had a greater effect on the sulfur metabolism, cysteine and methionine metabolism in N. sibirica leaves, while various amino acid metabolism, TCA cycle, photosynthetic carbon fixation and sulfur metabolism and other metabolic pathways have been significantly affected by 400 mmol L−1 NaCl treatment. Correlation analysis of differential genes in transcriptome and differential metabolites in metabolome have found that the genes of AMY2, BAM1, GPAT3, ASP1, CML38 and RPL4 and the metabolites of L-cysteine, proline, 4-aminobutyric acid and oxaloacetate played an important role in N. sibirica salt tolerance control. This is a further improvement of the salt tolerance mechanism of N. sibirica, and it will provide a theoretical basis and technical support for treatment of saline-alkali soil and the cultivation of halophytes.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1037.2-1038
Author(s):  
X. Sun ◽  
S. X. Zhang ◽  
S. Song ◽  
T. Kong ◽  
C. Zheng ◽  
...  

Background:Psoriasis is an immune-mediated, genetic disease manifesting in the skin or joints or both, and also has a strong genetic predisposition and autoimmune pathogenic traits1. The hallmark of psoriasis is sustained inflammation that leads to uncontrolled keratinocyte proliferation and dysfunctional differentiation. And it’s also a chronic relapsing disease, which often necessitates a long-term therapy2.Objectives:To investigate the molecular mechanisms of psoriasis and find the potential gene targets for diagnosis and treating psoriasis.Methods:Total 334 gene expression data of patients with psoriasis research (GSE13355 GSE14905 and GSE30999) were obtained from the Gene Expression Omnibus database. After data preprocessing and screening of differentially expressed genes (DEGs) by R software. Online toll Metascape3 was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. Interactions of proteins encoded by DEGs were discovered by Protein-protein interaction network (PPI) using STRING online software. Cytoscape software was utilized to visualize PPI and the degree of each DEGs was obtained by analyzing the topological structure of the PPI network.Results:A total of 611 DEGs were found to be differentially expressed in psoriasis. GO analysis revealed that up-regulated DEGs were mostly associated with defense and response to external stimulus while down-regulated DEGs were mostly associated with metabolism and synthesis of lipids. KEGG enrichment analysis suggested they were mainly enriched in IL-17 signaling, Toll-like receptor signaling and PPAR signaling pathways, Cytokine-cytokine receptor interaction and lipid metabolism. In addition, top 9 key genes (CXCL10, OASL, IFIT1, IFIT3, RSAD2, MX1, OAS1, IFI44 and OAS2) were identified through Cytoscape.Conclusion:DEGs of psoriasis may play an essential role in disease development and may be potential pathogeneses of psoriasis.References:[1]Boehncke WH, Schon MP. Psoriasis. Lancet 2015;386(9997):983-94. doi: 10.1016/S0140-6736(14)61909-7 [published Online First: 2015/05/31].[2]Zhang YJ, Sun YZ, Gao XH, et al. Integrated bioinformatic analysis of differentially expressed genes and signaling pathways in plaque psoriasis. Mol Med Rep 2019;20(1):225-35. doi: 10.3892/mmr.2019.10241 [published Online First: 2019/05/23].[3]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhixin Wu ◽  
Yinxian Wen ◽  
Guanlan Fan ◽  
Hangyuan He ◽  
Siqi Zhou ◽  
...  

Abstract Background Steroid-induced osteonecrosis of the femoral head (SONFH) is a chronic and crippling bone disease. This study aims to reveal novel diagnostic biomarkers of SONFH. Methods The GSE123568 dataset based on peripheral blood samples from 10 healthy individuals and 30 SONFH patients was used for weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. The genes in the module related to SONFH and the DEGs were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Genes with |gene significance| > 0.7 and |module membership| > 0.8 were selected as hub genes in modules. The DEGs with the degree of connectivity ≥5 were chosen as hub genes in DEGs. Subsequently, the overlapping genes of hub genes in modules and hub genes in DEGs were selected as key genes for SONFH. And then, the key genes were verified in another dataset, and the diagnostic value of key genes was evaluated by receiver operating characteristic (ROC) curve. Results Nine gene co-expression modules were constructed via WGCNA. The brown module with 1258 genes was most significantly correlated with SONFH and was identified as the key module for SONFH. The results of functional enrichment analysis showed that the genes in the key module were mainly enriched in the inflammatory response, apoptotic process and osteoclast differentiation. A total of 91 genes were identified as hub genes in the key module. Besides, 145 DEGs were identified by DEGs screening and 26 genes were identified as hub genes of DEGs. Overlapping genes of hub genes in the key module and hub genes in DEGs, including RHAG, RNF14, HEMGN, and SLC2A1, were further selected as key genes for SONFH. The diagnostic value of these key genes for SONFH was confirmed by ROC curve. The validation results of these key genes in GSE26316 dataset showed that only HEMGN and SLC2A1 were downregulated in the SONFH group, suggesting that they were more likely to be diagnostic biomarkers of SOFNH than RHAG and RNF14. Conclusions Our study identified that two key genes, HEMGN and SLC2A1, might be potential diagnostic biomarkers of SONFH.


2019 ◽  
Vol 60 (8) ◽  
pp. 1829-1841 ◽  
Author(s):  
Guochun Wu ◽  
Sha Li ◽  
Xiaochuan Li ◽  
Yunhong Liu ◽  
Shuangshuang Zhao ◽  
...  

Abstract Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.


2021 ◽  
Author(s):  
Shaowei Fan ◽  
Yuanhui Hu

Abstract Background: Heart failure (HF) is the most common potential cause of death, causing a huge health and economic burden all over the world. So far, some impressive progress has been made in the study of pathogenesis. However, the underlying molecular mechanisms leading to this disease remain to be fully elucidated. Methods: The microarray data sets of GSE76701, GSE21610 and GSE8331 were retrieved from the gene expression comprehensive database (GEO). After merging all microarray data and adjusting batch effects, differentially expressed genes (DEG) were determined. Functional enrichment analysis was performed based on Gene Ontology (GO) resources, Kyoto Encyclopedia of Genes and Genomes (KEGG) resources, gene set enrichment analysis (GSEA), response pathway database and Disease Ontology (DO). Protein protein interaction (PPI) network was constructed using string database. Combined with the above important bioinformatics information, the potential key genes were selected. The comparative toxicological genomics database (CTD) is used to explore the interaction between potential key genes and HF. Results: We identified 38 patients with heart failure and 16 normal controls. There were 315 DEGs among HF samples, including 278 up-regulated genes and 37 down-regulated genes. Pathway enrichment analysis showed that most DEGs were significantly enriched in BMP signal pathway, transmembrane receptor protein serine / threonine kinase signal pathway, extracellular matrix, basement membrane, glycosaminoglycan binding, sulfur compound binding and so on. Similarly, GSEA enrichment analysis showed that DEGs were mainly enriched in extracellular matrix and extracellular matrix related proteins. BBS9, CHRD, BMP4, MYH6, NPPA and CCL5 are central genes in PPI networks and modules. Conclusions: the enrichment pathway of DEGs and go ontology may reveal the molecular mechanism of HF. Among them, target genes EIF1AY, RPS4Y1, USP9Y, KDM5D, DDX3Y, NPPA, HBB, TSIX, LOC28556 and XIST are expected to become new targets for heart failure. Our findings provide potential biomarkers or therapeutic targets for the further study of heart failure and contribute to the development of advanced prediction, diagnosis and treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document