Phenolic content and antioxidant activity in two contrasting Medicago ciliaris lines cultivated under salt stress

Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Imène Salah ◽  
Héla Mahmoudi ◽  
Margaret Gruber ◽  
Tarek Slatni ◽  
Mondher Boulaaba ◽  
...  

AbstractThe objective of this study was to determine more indepth physiological and antioxidant responses in two Medicago ciliaris lines (a salt-tolerant line TNC 1.8 and a salt-sensitive line TNC 11.9) with contrasting responses to 100 mM NaCl. Under salt stress, both lines showed a decrease in total biomass and in the growth rate for roots, but TNC 1.8 was less affected by salt than TNC 11.9 in that it maintained leaf growth even in the presence of added salt. In both lines, salt stress mainly affected micronutrient status (Fe, Mn, Cu and Zn) rather than K nutrition, but the tolerant line TNC 1.8 accumulated more Na in leaves and less in roots compared with TNC 11.9. Salt stress decreased total soluble sugars (TSS) in all organs of the sensitive line TNC 11.9, whereas TSS was only reduced in roots of the tolerant line. The salt-induced drop in growth was linked to an increase in lipid peroxidation in roots of both lines and in leaves of the sensitive line. The salt-tolerant line TNC 1.8 was more efficient at managing salt-induced oxidative damage in leaves and to a lesser extent in roots than the salt-sensitive line TNC 11.9, by preserving higher phenolic compound and superoxide dismutase levels in both organs.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10765
Author(s):  
Xiaoxiang Zhang ◽  
Peng Liu ◽  
Chunyan Qing ◽  
Cong Yang ◽  
Yaou Shen ◽  
...  

Salt stress affects crop yield by limiting growth and delaying development. In this study, we constructed 16 transcriptome libraries from maize seedling roots using two maize lines, with contrasting salt tolerance, that were exposed to salt stress for 0, 6, 18 and 36 h. In total, 6,584 differential expression genes (DEGs; 3,669 upregulated, 2,915 downregulated) were induced in the salt-sensitive line and 6,419 DEGs (3,876 upregulated, 2,543 downregulated) were induced in the salt-tolerant line. Several DEGs common to both lines were enriched in the ABA signaling pathway, which was presumed to coordinate the process of maize salt response. A total of 459 DEGs were specifically induced in the salt-tolerant line and represented candidate genes responsible for high salt-tolerance. Expression pattern analysis for these DEGs indicated that the period between 0 and 6 h was a crucial period for the rapid response of the tolerant genes under salt stress. Among these DEGs, several genes, Aux/IAA, SAUR, and CBL-interacting kinase have been reported to regulate salt tolerance. In addition, the transcription factors WRKY, bZIP and MYB acted as regulators in the salt-responsive regulatory network of maize roots. Our findings will contribute to understanding of the mechanism on salt response and provide references for functional gene revelation in plants.


2009 ◽  
Vol 57 (4) ◽  
pp. 471-488
Author(s):  
A. Tammam

Soil salinity is a major constraint to food production because it limits crop yield and restricts the use of land previously uncultivated. Breeding for tolerance to salinity in crops has usually been limited by the lack of reliable traits for selection. The mechanism of salt tolerance in two cotton ( Gossypium barbadens L.) cultivars (Giza 70 and Giza 88) and their responses to shoot spraying with 200 ppm m −3 IBA were studied.Treatment with IBA not only improved the growth of salt-affected Giza 70, but also increased the growth of this cultivar up to −2.7 MPa and reduced the inhibitory effect of salinity on photosynthetic pigments.This was accompanied by differences in the accumulation of sucrose and total soluble sugars and in the total available carbohydrate and protein contents. IBA ameliorated the inhibitory effect of salinity on growth, increased the carbohydrate and protein contents of both cotton cultivars and markedly retarded the accumulation of proline and glycine betaine. It resulted in the reduction of Na + accumulation in Giza 70, while in Giza 88 it enhanced the absorption and translocation of K + , resulting in higher K + /Na + ratios in the shoots. There were pronounced differences in the electrophoretic patterns of the proteins in both cultivars under salt stress and IBA treatment.


2019 ◽  
Vol 11 (2) ◽  
pp. 378 ◽  
Author(s):  
Jing Pan ◽  
Fei Peng ◽  
Xian Xue ◽  
Quangang You ◽  
Wenjuan Zhang ◽  
...  

Understanding the primary mechanisms for plant promotion under salt stress with plant growth promoting rhizobacteria (PGPR) inoculation of different salt-tolerant plant groups would be conducive to using PGPR efficiently. We conducted a meta-analysis to evaluate plant growth promotion and uncover its underlying mechanisms in salt-sensitive plants (SSP) and salt-tolerant plants (STP) with PGPR inoculation under salt stress. PGPR inoculation decreased proline, sodium ion (Na+) and malondialdehyde but increased plant biomass, nutrient acquisition (nitrogen, phosphorus, potassium ion (K+), calcium ion (Ca2+), and magnesium ion (Mg2+)), ion homeostasis (K+/Na+ ratio, Ca2+/Na+ ratio, and Mg2+/Na+ ratio), osmolytes accumulation (soluble sugar and soluble protein), antioxidants (superoxide dismutase), and photosynthesis (chlorophyll, carotenoid, and photosynthetic rate) in both SSP and STP. The effect size of total biomass positively correlated with the effect sizes of nutrient acquisition and the homeostasis of K+/Na+, and negatively correlated with the effect size of malondialdehyde in both SSP and STP. The effect size of total biomass also positively correlated with the effect sizes of carotenoid and the homeostasis in Ca2+/Na+ and Mg2+/Na+ and negatively correlated with the effect size of Na+ in SSP, but it only negatively correlated with the effect size of Ca2+ in STP. Our results suggest that the plant growth improvement depends on the nutrient acquisition enhancement in both SSP and STP, while ion homeostasis plays an important role and carotenoid may promote plant growth through protecting photosynthesis, reducing oxidative damage and promoting nutrient acquisition only in SSP after PGPR inoculation under salt stress.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Xiaoyan Quan ◽  
Xiaoli Liang ◽  
Hongmei Li ◽  
Chunjuan Xie ◽  
Wenxing He ◽  
...  

Salinity is one of the limiting factors of wheat production worldwide. A total of 334 internationally derived wheat genotypes were employed to identify new germplasm resources for salt tolerance breeding. Salt stress caused 39, 49, 58, 55, 21 and 39% reductions in shoot dry weight (SDW), root dry weight (RDW), shoot fresh weight (SFW), root fresh weight (RFW), shoot height (SH) and root length (RL) of wheat, respectively, compared with the control condition at the seedling stage. The wheat genotypes showed a wide genetic and tissue diversity for the determined characteristics in response to salt stress. Finally, 12 wheat genotypes were identified as salt-tolerant through a combination of one-factor (more emphasis on the biomass yield) and multifactor analysis. In general, greater accumulation of osmotic substances, efficient use of soluble sugars, lower Na+/K+ and a higher-efficiency antioxidative system contribute to better growth in the tolerant genotypes under salt stress. In other words, the tolerant genotypes are capable of maintaining stable osmotic potential and ion and redox homeostasis and providing more energy and materials for root growth. The identified genotypes with higher salt tolerance could be useful for developing new salt-tolerant wheat cultivars as well as in further studies to underline the genetic mechanisms of salt tolerance in wheat.


2014 ◽  
Vol 66 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Chaffei Haouari Chiraz ◽  
Hajjaji Nasraoui Afef ◽  
Bouthour Donia ◽  
Gouia Houda

Abstract Two wheat differing in salt sensitivity, was examined for osmolyte contents and activities of α-amylase, β-amylase and α-glucosidase enzymes involved in seeds germination, in absence as well as in presence of 100, 150, 200 and 300 mM NaCl. The inhibitory effects of NaCl differed, depending on the species tested. In wild wheat specie (Triticum monococcum), with reduced germination percentage and lower relative water content, the increase in NaCl concentration resulted in the decrease in endogenous level of proline, total soluble sugars and activities of the main enzymes involved in the germination process. In contrast, cultivated wheat specie (Triticum aestivum) seed in response to salt stress accumulated higher proline and total soluble carbohydrate concentrations which improved their water status and the enzyme activities involved in the germination process. Differential response of the different species of wheat to salt stress is governed by the accumulation of osmolytes in seeds.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ze Peng ◽  
Yiqin Wang ◽  
Guangdong Geng ◽  
Rui Yang ◽  
Zhifen Yang ◽  
...  

Salt stress results in the severe decline of yield and quality in wheat. In the present study, salt-tolerant Tritipyrum (“Y1805”) and salt-sensitive wheat “Chinese Spring” (“CS”) were selected from 121 wheat germplasms to test their physiological, antioxidant enzyme, and transcriptomic responses and mechanisms against salt stress and recovery. 56 chromosomes were identified in “Y1805” that comprised A, B, and D chromosomes from wheat parent and E chromosomes from Thinopyrum elongatum, adding to salt-tolerant trait. Salt stress had a greater inhibitory effect on roots than on shoots, and “Y1805” demonstrated stronger salt tolerance than “CS.” Compared with “CS,” the activities of superoxide dismutase and catalase in “Y1805” significantly increased under salt stress. “Y1805” could synthesize more proline and soluble sugars than “CS.” Both the net photosynthetic rate and chlorophyll a/b were affected by salt stress, though the level of damage in “Y1805” was significantly less than in “CS.” Transcriptome analysis showed that the differences in the transcriptional regulatory networks of “Y1805” were not only in response to salt stress but also in recovery. The functions of many salt-responsive differentially expressed genes were correlated closely with the pathways “peroxisome,” “arginine and proline metabolism,” “starch and sucrose metabolism,” “chlorophyll and porphyrin metabolism,” and “photosynthesis.”


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1979
Author(s):  
Ulkar Ibrahimova ◽  
Zarifa Suleymanova ◽  
Marian Brestic ◽  
Alamdar Mammadov ◽  
Omar M. Ali ◽  
...  

This work deals with the assessment of physiological and biochemical responses to salt stress, as well as the regulation of the expression of the K+/Na+ transporter gene-TaHKT1;5 of two Triticum aestivum L. genotypes with contrasting tolerance. According to the observations, salinity stress caused lipid peroxidation; accumulation of soluble sugars and proline; decreased osmotic potential, Fv/Fm value, and K+/Na+ ratio; and increased the activity of antioxidant enzymes in both genotypes. In the salt-tolerant genotype, the activity of enzymes, the amounts of soluble sugars and proline were higher, the osmotic potential and the lipid peroxidation were lower than in the sensitive one, and the Fv/Fm value remained unchanged. A comparison of the accumulation of Na+ and K+ ions in the roots and leaves showed that the Na+ content in the leaves is lower. The selective transport of K+ ions from roots to leaves was more efficient in the salt-tolerant genotype Mirbashir-128; consequently, the K+/Na+ ratio in the leaves and roots of this genotype was higher compared with the sensitive Fatima genotype. The semi-quantitative RT-PCR expression experiments on TaHKT1;5 indicated that this gene was not expressed in the leaf of the wheat genotypes. Under salt stress, the expression level of the TaHKT1;5 gene increased in the root tissues of the salt-sensitive genotype, while it decreased in the salt-tolerant wheat genotype. The results obtained suggest that the ion status and salt tolerance of the wheat genotypes are related to the TaHKT1;5 gene activity.


Author(s):  
Omid Sadeghipour

A pot experiment was conducted to investigate the role of methyl jasmonate (MeJA) in alleviation of the adverse effects of salinity on cowpea. Seeds were soaked in 0, 25 and 50 µM MeJA for 20 h and then the seedlings were irrigated with different concentrations of NaCl (0, 50 and 100 mM). Salt stress markedly decreased growth attributes namely shoot length, shoot and root dry weight and leaf area. NaCl stress also significantly reduced chlorophyll value, stomatal conductance, net photosynthetic rate, total soluble proteins and relative water content (RWC). Furthermore, salinity noticeably increased proline and total soluble sugars content. Nonetheless, seeds treatment with MeJA especially 50 µM, improved the growth of cowpea plants by increasing chlorophyll value, stomatal conductance, net photosynthetic rate, total soluble proteins, proline accumulation, total soluble sugars and RWC under salt stress conditions. Thus results indicate that pretreatment of seeds with MeJA could be used as an effective technique for improving cowpea plants tolerance to salt stress.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 526 ◽  
Author(s):  
Sonia Mbarki ◽  
Milan Skalicky ◽  
Pavla Vachova ◽  
Shokoofeh Hajihashemi ◽  
Latifa Jouini ◽  
...  

Salt stress is one of the most serious environmental stressors that affect productivity of salt-sensitive crops. Medicago ciliaris is an annual legume whose adaptation to agroclimatic conditions has not been well described. This study focused on the salinity tolerance of M. ciliaris genotypes compared to M. intertexta and M. scutellata in terms of plant growth, physiology, and biochemistry. Salt tolerance was determined at both germination and early seedling growth. Germination and hydroponic assays were used with exposing seeds to 0, 50, 100, 150, and 200 mM NaCl. Among seven genotypes of M. ciliaris studied, Pop1, 355, and 667, were most salt tolerant. Populations like 355 and 667 showed marked tolerance to salinity at both germination and seedling stages (TI ≤1, SI(FGP) > 0 increased FGP ≥ 20% and SI(DW) < 0 (DW decline ≤ 20%); at 100 mM); while Pop1 was the most salt tolerant one at seedling stages with (TI =1.79, SI(FGP) < 0 decline of FGP ≤ 40% and with increased DW to 79%); at 150 mM NaCl). The genotypes, 306, 773, and M. scutellata, were moderately tolerant to salt stress depending on salt concentration. Our study may be used as an efficient strategy to reveal genetic variation in response to salt stress. This approach allows selection for desirable traits, enabling more efficient applications in breeding methods to achieve stress-tolerant M. ciliaris populations.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 651 ◽  
Author(s):  
Marco Brenes ◽  
Andrea Solana ◽  
Monica Boscaiu ◽  
Ana Fita ◽  
Oscar Vicente ◽  
...  

Eggplant (Solanum melongena) has been described as moderately sensitive to salinity. We characterised the responses to salt stress of eggplant and S. insanum, its putative wild ancestor. Young plants of two accessions of both species were watered for 25 days with an irrigation solution containing NaCl at concentrations of 0 (control), 50, 100, 200, and 300 mM. Plant growth, photosynthetic activity, concentrations of photosynthetic pigments, K+, Na+, and Cl− ions, proline, total soluble sugars, malondialdehyde, total phenolics, and total flavonoids, as well as superoxide dismutase, catalase, and glutathione reductase specific activities, were quantified. Salt stress-induced reduction of growth was greater in S. melongena than in S. insanum. The photosynthetic activity decreased in both species, except for substomatal CO2 concentration (Ci) in S. insanum, although the photosynthetic pigments were not degraded in the presence of NaCl. The levels of Na+ and Cl− increased in roots and leaves with increasing NaCl doses, but leaf K+ concentrations were maintained, indicating a relative stress tolerance in the two accessions, which also did not seem to suffer a remarkable degree of salt-induced oxidative stress. Our results suggest that the higher salt tolerance of S. insanum mostly lies in its ability to accumulate higher concentrations of proline and, to a lesser extent, Na+ and Cl−. The results obtained indicate that S. insanum is a good candidate for improving salt tolerance in eggplant through breeding and introgression programmes.


Sign in / Sign up

Export Citation Format

Share Document