Coordinated signal control for arterial intersections using fuzzy logic

2013 ◽  
Vol 3 (3) ◽  
Author(s):  
Davood Kermanian ◽  
Assef Zare ◽  
Saeed Balochian

AbstractEvery day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people’s time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

Author(s):  
Cynthia Taylor ◽  
Deirdere Meldrum ◽  
Les Jacobson

A fuzzy logic ramp-metering algorithm was designed to overcome the limitations of conventional ramp-metering strategies. The fuzzy controller demonstrated improved robustness, prevented heavy congestion, intelligently balanced conflicting needs, and tuned easily. The objective was to maximize total distance traveled and minimize total travel time and vehicle delay, while maintaining acceptable ramp queues. A multiple-ramp study site from the Seattle I-5 corridor was modeled and tested using the freeway simulation software, FRESIM. For five of the six testing sets, encompassing a variety of traffic conditions, the fuzzy controller outperformed the three other controllers tested.


2020 ◽  
Vol 1 (2) ◽  
pp. 51-61
Author(s):  
Ria Yuliani Kartikasari

Congestion is one of the big problems around the world, especially for big cities. Intersections are the scene of congestion because the lane is the meeting point of two or more roads which has a major influence on the smooth flow of vehicles on the road network. This congestion occurs due to various factors, one of which is the statistical traffic light duration, which does not match traffic conditions. Based on this, there needs to be a development in the timing of a more adaptive green light. This study describes the design of a traffic light controller using the Sugeno method fuzzy logic. This study aims to design a green light duration calculation by applying fuzzy logic that results in adaptive traffic light duration at intersections, by entering the density of each intersection path, which is divided into 4 inputs, namely regulated lane density, opposing lane density I, and opposite lane density. II, the density of the opposite lane III, with the aim of the system being able to produce a duration that is in accordance with the current traffic situation with an output in the form of a green light duration on the regulated lane.


2008 ◽  
Vol 18 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Hamid Boubertakh ◽  
Mohamed Tadjine ◽  
Pierre-Yves Glorennec ◽  
Salim Labiod

This paper proposes a new fuzzy logic-based navigation method for a mobile robot moving in an unknown environment. This method allows the robot obstacles avoidance and goal seeking without being stuck in local minima. A simple Fuzzy controller is constructed based on the human sense and a fuzzy reinforcement learning algorithm is used to fine tune the fuzzy rule base parameters. The advantages of the proposed method are its simplicity, its easy implementation for industrial applications, and the robot joins its objective despite the environment complexity. Some simulation results of the proposed method and a comparison with previous works are provided.


2011 ◽  
Vol 361-363 ◽  
pp. 1799-1802 ◽  
Author(s):  
Li Fang Bai ◽  
Jin Xue Xu

A fuzzy logic controller is presented for a four-phase isolated signalized intersection on normal and abnormal conditions. It controls the traffic light timings to ensure smooth flow of traffic with minimal delay, according to the real-time traffic flow information detected by the vehicle detector. A new controller is proposed, in which the fuzzy membership functions are optimized by neural network and the control rules are optimized by genetic algorithm. Results show that the traditional fuzzy controller achieves good control effect and the performance of the controller optimized is better than the traditional one on both normal and abnormal conditions.


2020 ◽  
Vol 13 (3) ◽  
pp. 422-432
Author(s):  
Madan Mohan Agarwal ◽  
Hemraj Saini ◽  
Mahesh Chandra Govil

Background: The performance of the network protocol depends on number of parameters like re-broadcast probability, mobility, the distance between source and destination, hop count, queue length and residual energy, etc. Objective: In this paper, a new energy efficient routing protocol IAOMDV-PF is developed based on the fixed threshold re-broadcast probability determination and best route selection using fuzzy logic from multiple routes. Methods: In the first phase, the proposed protocol determines fixed threshold rebroadcast probability. It is used for discovering multiple paths between the source and the destination. The threshold probability at each node decides the rebroadcasting of received control packets to its neighbors thereby reducing routing overheads and energy consumption. The multiple paths list received from the first phase and supply to the second phase that is the fuzzy controller selects the best path. This fuzzy controller has been named as Fuzzy Best Route Selector (FBRS). FBRS determines the best path based on function of queue length, the distance between nodes and mobility of nodes. Results: Comparative analysis of the proposed protocol named as "Improved Ad-Hoc On-demand Multiple Path Distance Vector based on Probabilistic and Fuzzy logic" (IAOMDV-PF) shows that it is more efficient in terms of overheads and energy consumption. Conclusion: The proposed protocol reduced energy consumption by about 61%, 58% and 30% with respect to FF-AOMDV, IAOMDV-F and FPAOMDV routing protocols, respectively. The proposed protocol has been simulated and analyzed by using NS-2.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2617
Author(s):  
Catalin Dumitrescu ◽  
Petrica Ciotirnae ◽  
Constantin Vizitiu

When considering the concept of distributed intelligent control, three types of components can be defined: (i) fuzzy sensors which provide a representation of measurements as fuzzy subsets, (ii) fuzzy actuators which can operate in the real world based on the fuzzy subsets they receive, and, (iii) the fuzzy components of the inference. As a result, these elements generate new fuzzy subsets from the fuzzy elements that were previously used. The purpose of this article is to define the elements of an interoperable technology Fuzzy Applied Cell Control-soft computing language for the development of fuzzy components with distributed intelligence implemented on the DSP target. The cells in the network are configured using the operations of symbolic fusion, symbolic inference and fuzzy–real symbolic transformation, which are based on the concepts of fuzzy meaning and fuzzy description. The two applications presented in the article, Agent-based modeling and fuzzy logic for simulating pedestrian crowds in panic decision-making situations and Fuzzy controller for mobile robot, are both timely. The increasing occurrence of panic moments during mass events prompted the investigation of the impact of panic on crowd dynamics and the simulation of pedestrian flows in panic situations. Based on the research presented in the article, we propose a Fuzzy controller-based system for determining pedestrian flows and calculating the shortest evacuation distance in panic situations. Fuzzy logic, one of the representation techniques in artificial intelligence, is a well-known method in soft computing that allows the treatment of strong constraints caused by the inaccuracy of the data obtained from the robot’s sensors. Based on this motivation, the second application proposed in the article creates an intelligent control technique based on Fuzzy Logic Control (FLC), a feature of intelligent control systems that can be used as an alternative to traditional control techniques for mobile robots. This method allows you to simulate the experience of a human expert. The benefits of using a network of fuzzy components are not limited to those provided distributed systems. Fuzzy cells are simple to configure while also providing high-level functions such as mergers and decision-making processes.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.


Sign in / Sign up

Export Citation Format

Share Document