scholarly journals Pefformance and Emission Evaluation of Direct Inejction Diesel Engine Using Canola, Sesame Biodiesels with N-Butanol

2021 ◽  
Vol 71 (1) ◽  
pp. 139-148
Author(s):  
Prasad K. Hari ◽  
Srinivasan C. Ananda ◽  
Kumar K. Praveen

Abstract Biodiesels from vegetable oils are also gaining momentum as a encouraging fuels which acts as alternative for agricultural diesel engines. Even though there is a slight penalty in the performance parameters by the usage of vegetable biodiesel fuels in diesel engines because of their high viscosity, there is considerable reduction in emissions which is dominant factor from the environmental perspective. In the present experimental work four fuels Canola (20% Canola oil plus 80% Diesel) biodiesel (B20C),Sesame (20% Sesame oil plus 80% Diesel) biodiesel (B20S), B20C blended with 5% n-butanol(B20C5B) and B20S is blended with 5% nbutanol(B20S5B) have tried as an alternative fuels to the Diesel. In the primitive stage tests were supervised on diesel engine with diesel. Thereafter in the second stage, tests were directed at identical operating conditions by using B20C, B20S and their blends as biodiesels. The engine important performance parameters brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and also the emission characteristics hydrocarbons (HC), carbon monoxide (CO), smoke opacity and nitrogen oxides (NOx) are evaluated. The results are contrasted with respect on base line data (diesel). From the experimental readings it was observed that the BTE of B20C, B20S, B20C5B and B20S5B at 100% load decreased by 2.64%,1.9 %,1.41% and 0.94% respectively, relative to diesel (D). At maximum loading condition BSFC for diesel,B20C,B20S,B20C5B and B20S5B are 0.254, 0.284,0.273,0.270 and 0.260kg/kWh. Overall, it is concluded that the emission characteristics of HC, CO and Smoke opacity are dropped for all tested biodiesels when compared to diesel fuel.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1428
Author(s):  
Guirong Wu ◽  
Jun Cong Ge ◽  
Nag Jung Choi

Biodiesel is known for its high cetane number and high oxygen content among other advantages, but its high viscosity and density are not trivial issues for fuel flow and atomization, especially under idling conditions. Due to low cylinder temperature and incomplete combustion, engine idling is one of the worst operating conditions. As a common fuel additive, ethanol can address some of the shortcomings of biodiesel. This work evaluated the combustion and emission characteristics of different concentrations of ethanol additives on a diesel engine fueled with palm oil biodiesel under idling conditions. The results show that ethanol helps to increase peak cylinder pressure and heat release rate, suppressing the production of certain emissions with a maximum reduction in smoke opacity of 71%.


2009 ◽  
Vol 13 (3) ◽  
pp. 207-217 ◽  
Author(s):  
Rao Yarrapathruni ◽  
Sudheer Voleti ◽  
Reddy Pereddy ◽  
Raju Alluru

Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


2015 ◽  
Vol 14 (2) ◽  
pp. 1
Author(s):  
Tanti Ardiyati ◽  
Nathaniel P. Dugos ◽  
Susan A. Roces ◽  
Masaaki Suzuki ◽  
Kusnanto Kusnanto

The stability and emission characteristics of diesel-ethanol-coconut methyl ester (CME) blends were studied to determine the most suitable fuel blends to be applied in diesel engines. This is done in order to assess the potential of the blends as a substitute for commercially available diesel fuel used in diesel engine. The stability results of the blends using 100% and 99.5% ethanol purity showed that the fuel blends containing ethanol up to 10% and CME of 5% and greater exhibited high mutual solubility at any temperature range and were resistant to microbial growths after 3 months storage. Engine operations at low speed especially at idle-no load and using a bigger size engine lead to a minimum ignition delay and result in lower fuel consumption rate. The emission test results with the new- blended fuels showed a reduction in CO2 and increasing percentage by volume of CO2 compared to commercially available diesel. The blends could deliver an efficient combustion and could run efficiently since production of the CO2 gases is higher than that of CO. The blends of 80% diesel, 5% ethanol, 10% CME; and 80% diesel, 10% ethanol, 10% CME could reduce the smoke opacity compared to commercially available diesel.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vedant Dwivedi ◽  
Srikanth Hari ◽  
S. M. Kumaran ◽  
B. V. S. S. S. Prasad ◽  
Vasudevan Raghavan

Abstract Experimental and numerical study of flame and emission characteristics in a tubular micro gas turbine combustor is reported. Micro gas turbines are used for distributed power (DP) generation using alternative fuels in rural areas. The combustion and emission characteristics from the combustor have to be studied for proper design using different fuel types. In this study methane, representing fossil natural gas, and biogas, a renewable fuel that is a mixture of methane and carbon-dioxide, are used. Primary air flow (with swirl component) and secondary aeration have been varied. Experiments have been conducted to measure the exit temperatures. Turbulent reactive flow model is used to simulate the methane and biogas flames. Numerical results are validated against the experimental data. Parametric studies to reveal the effects of primary flow, secondary flow and swirl have been conducted and results are systematically presented. An analysis of nitric-oxides emission for different fuels and operating conditions has been presented subsequently.


Pomorstvo ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 228-238 ◽  
Author(s):  
Sergejus LebedevasPaulius ◽  
Paulius Rapalis ◽  
Rima Mickevicienė

In this study, we have investigated the efficiency of transport diesel engines CAT3512B-HD in transient braking and acceleration modes in 2M62M locomotives. A comparative analysis of the diesel engine performance has been performed at speeds of power increase and braking ranging from 4–5 kW/s to 17–18 kW/s. A decrease in the fuel economy occurred, and the main reason for it (compared with the steady-state operating condition at qcycl = idem) has been found to be the deterioration of the mechanical efficiency coefficient due to the loss of the additional equipment kinetic energy of the engine. The efficiency decreased by 3–3.5% under power increase operations and by 10–14% in the braking modes. The original methodology for the evaluation of the diesel engine parameters registered by the engine control units (ECU) in the engine operating conditions, mathematical modelling application AVL BOOST, and analytical summaries in artificial neural networks (ANNs) have been used. The errors in the obtained results have been 5–8% at a determination coefficient of 0.97–0.99.


2011 ◽  
Vol 268-270 ◽  
pp. 1313-1316
Author(s):  
Yi Tao

Tests were performed with a light-vehicle diesel engine. Four representative operating conditions in 1600r/min speed have been considered. This article compares the combustion and emission characteristics of engine fueled with Bio-diesel and standard diesel. The results showed that the ignition delay time and combustion duration shorten when fuel with bio-diesel. Bio-diesel contains more oxygen and that contribute to complete combustion of fuel. The combustion of bio-diesel fuel results higher NOx emission and lower HC、CO emissions at all operating conditions. But lower Soot emission because of bio-diesel dose not contains sulfides. At the same time, fuel consumption higher, because calorific value of bio-diesel is lower than standard diesel.


2013 ◽  
Vol 768 ◽  
pp. 218-225 ◽  
Author(s):  
M. Parthasarathy ◽  
J. Isaac Joshua Ramesh Lalvani ◽  
B. Parthiban ◽  
K. Annamalai

Random extraction and consumption of fossil fuels have leads to a reduction in petroleum reserves. As for as developing countries like India is connected the need to search for alternative fuels is most urgent as India is heavily dependent upon the import of petroleum to meet its demands for automotive and power sectors. This has inspired curiously in alternative sources for petroleum based fuels. An alternative fuel must be economically competitive and environmentally acceptable. India has great potential for production of biofuels like Biodiesel from vegetable seeds. In the quest to find an alternative to the existing diesel and petrol fuels various Biodiesel and alcohol has been tried and tested in the Internal Compression engine. In this direction, an attempt has been made to investigate the performance and emission characteristic of Biodiesels and compare it with diesel. The Biodiesels considered are Tamanu, Mahua and Pongamia were tested with four stroke diesel engine. A drastic improvement in reduction of Hydrocarbon (HC) and Carbon monoxide (CO) were found for Biodiesels at high engine loads. Smoke and Nitrogen oxides (NOx) were slightly higher for Biodiesels. Biodiesels exposed similar combustion stages to diesel fuel. Therefore use of transesterified vegetable oils can be partially substituted for the diesel fuel at most operating conditions in term of the performance parameters and emissions without any engine modification.


Sign in / Sign up

Export Citation Format

Share Document