The Effect of Modification with Rare Earth Elements on ZnAl22Cu3 Alloy Structure And Mechanical Properties / Wpływ Modyfikacji Pierwiastkami Ziem Rzadkich Na Strukture I Własciwosci Mechaniczne Stopu ZnAl22Cu3

2013 ◽  
Vol 58 (1) ◽  
pp. 49-53 ◽  
Author(s):  
R. Michalik

The influence of modification with rare earth elements (RE) on the structure and mechanical properties of alloy ZnAl22Cu3 is presented in the paper. ZnAl22Cu3, ZnAl22Cu3SiM and ZnAl22Cu3Si (modified alloy) alloys were tested. ZnAl22Cu3Si and ZnAl22Cu3 alloys were characterized with heterogeneous, fine-grained, dendritic structure. The structure of the alloy ZnAl22Cu3SiM was much more homogeneous. It was found that the addition of silicon reduces the tensile strength. Addition of rare earth elements to the alloy with silicon resulted in the re-growth of melt strength of alloy. It was also found that the modification performed by using of rare earth elements increases the hardness of the alloy.

2022 ◽  
Vol 327 ◽  
pp. 82-97
Author(s):  
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.


2020 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Daama Isaac ◽  
Mbowou Gbambie Isaac Bertrand ◽  
Yamgouot Ngounouno Fadimatou ◽  
Ntoumbe Mama ◽  
Ngounouno Ismaïla

The Garga-Sarali granitoids outcrop in form of large slabs and undistorted large blocks, into a schisto-gneissic basement. These rocks contain mainly muscovite and microcline, followed by K-feldspar, quartz, biotite, pyroxene, zircon and oxides, with coarse-grained to fine-grained textures. Geochemical analysis show that it belongs to differentiated rocks group (granodiorite-granite) with high SiO2 (up to 72 wt%) contents. Their genesis was made from a process of partial melting and fractional crystallization. These rocks are classified as belonging to I- and S-Type, meta-peraluminous, shoshonitic granites; belonging to the domain of volcanic arcs. The rare earth elements patterns suggest a source enriched of incompatible elements. The Nb-Ta and Ti negative anomalies from the multi-element patterns are characteristics of the subduction domains.  


1994 ◽  
Vol 58 (393) ◽  
pp. 533-541 ◽  
Author(s):  
J. T. Temple ◽  
J. N. Walsh

AbstractRelative concentrations of elements in the minerals of fine-grained sediments can be inferred from element-mineral correlation coefficients. The technique is applied to the distribution of REE in Middle Ordovician shales from South Wales analysed by ICPAES, Leco C/S125 and XRD. Phosphate and chlorite show mid-REE enrichment; muscovite + biotite shows mid-REE depletion. The complementarity of the chlorite and muscovite + biotite patterns may be due to fractionation during diagenetic recrystallisation. Partial correlation analysis is used to infer the presence of zircon.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Shih-Ying Chang ◽  
An-Bang Wu ◽  
Jun-Yen Lee ◽  
Yan-Hua Huang

Abstract The microstructure, thermal behavior, and mechanical properties of Sn-xZn-0.1RE (x = 5, 10, 20, and 30 wt%) alloys containing mixed trace rare earth elements were investigated in this study. The results showed that the alloys had the same solidus temperature of about 199 °C. Zinc content higher than 10% enhanced slightly the eutectic temperatures and enlarged the eutectic temperature range of the alloys. The microstructures of most of the alloys exhibited Zn-rich coarse clusters, but not for Sn-5Zn-0.1RE. The tensile strength of the alloys increased with increasing zinc concentration.


2013 ◽  
Vol 377 ◽  
pp. 128-132
Author(s):  
Zhuang Li ◽  
Di Wu ◽  
Wei Lv ◽  
Shao Pu Kang ◽  
Zhen Zheng

Rare earth elements (REE) are harmless for human health. REE addition contributes to the improvement of the machinability of the steels. In the present paper, machining characteristics of austenitic stainless steels without lead addition were investigated by adding free-machining elements, such as sulfur, REE and bismuth. The results have shown that large numbers of rounded, globular shaped inclusions were obtained for both steels. The machinability of steel B is better than that of steel A, and the cutting forces of steel B are lower than those of steel A at various cutting speeds. Lead can be substituted by REE and bismuth in free machinable austenitic stainless steels. REE significantly affects machining characteristics of austenitic stainless steels without lead addition. The mechanical properties of both steels were similar, and their fracture exhibited ductile characteristics. Satisfactory machinability and mechanical properties can be obtained for both steels.


2010 ◽  
Vol 34-35 ◽  
pp. 1651-1655
Author(s):  
An Ru Wu ◽  
Li Jun Dong ◽  
Wei Guo Gao ◽  
Xiang Ling Zhou

The microstructure and mechanical properties of Mg-6.0%Zn-0.5%Zr (ZK60) and ZK60-2.0%Nd-1.0%Y alloys after extrusion, rolling and then T5 and T6 heat-treatment were investigated. The hardness and tensile strength at T5 and T6 condition were tested. The results show that the mechanical properties of ZK60--2.0%Nd-1.0%Y alloy are superior to that of ZK60 alloy. The hardness of the investigated alloy at T5 condition is higher than at T6. The strengthening of ZK60-2.0%Nd-1.0%Y alloy originates from the interaction of phase and dislocations. The precipitation order of ZK60-2.0%Nd-1.0%Y alloy is GP zone . The magnesium alloy contains rare earth elements with good casting performance, great potential for plastic deformation, high strength, excellent mechanical properties and many other advantages. The magnesium alloy oversaturation solid solution's decomposition process conforms to time the common alloy oversaturation solid solution decomposition order rule, often namely before separating out the equilibrium phase presents some transitional stage the structure, like the GP area, the transition are equal, but the different series magnesium alloy presents the different characteristic, therefore uses the heat treatment method also has big difference [1-5]. In this paper, we will analysis mechanical properties of aging process of testing and microstructure of Mg-6.0% Zn-0.5% Zr-2.0% Nd-1.0% Y alloy , do Research about strengthen the effect of melting and from the product of the relationship on different alloy aging process, and analysis contribution of rare earth elements Nd, Y to alloy strengthen.


2008 ◽  
Vol 147 (1) ◽  
pp. 1-6 ◽  
Author(s):  
F.A. Guo ◽  
C.J. Xiang ◽  
C.X. Yang ◽  
X.M. Cao ◽  
S.G. Mu ◽  
...  

2011 ◽  
Vol 239-242 ◽  
pp. 352-355
Author(s):  
Quan An Li ◽  
Qing Zhang ◽  
Chang Qing Li ◽  
Yao Gui Wang

The effects of 2-12 wt.% Y addition on the microstructure and mechanical properties of as-cast Mg-Y binary alloys have been investigated. The results show that proper content of rare earth Y addition can obviously refine the grains and form high melting point Mg24Y5 phases in the matrix, and improve the microstructure and mechanical properties of the alloys. At room temperature, the optimum combination of ultimate tensile strength and elongation, 195MPa and 7.5%, is obtained in Mg-10 wt.% Y alloy.


Sign in / Sign up

Export Citation Format

Share Document