scholarly journals Perbandingan Arachis pintoi dengan Jenis Tanaman Penutup Tanah Lain sebagai Biomulsa di Pertanaman Kelapa Sawit Belum Menghasilkan

2018 ◽  
Vol 46 (2) ◽  
pp. 215
Author(s):  
Yuniarti , ◽  
M. Achmad Chozin ◽  
Dwi Guntoro ◽  
Dan Kukuh Murtilaksono

ABSTRACT<br /><br />Cover crops have the same role as biomulches to maintain soil moisture and reduce the evaporation of soil water. The objective of research was to compare Arachis pintoi versus other cover crops as biomulch in immature oil palm plantations. The study was conducted in the Field of Education and Research Palm IPB-Cargill, Jonggol, Bogor starting in December 2014 until May 2015. The experiment was designed according to a randomized block design with four replications. The treatments were cover crop species (biomulch) i.e. no biomulch/natural vegetation, Arachis pintoi Karp. &amp; Greg., Centrosema pubescens Benth., Calopogonium mucunoides L. and Pueraria javanica Benth. Planting materials used were cutings of A. pintoi and seed of C. pubescens, C. mucunoides and P. javanica. The planting material were planted in plots 9 m x 3 m and plot for biomass 1 m x 1 m. The results showed that the A. pintoi was not significantly different from other biomulches for ground covering and capability to hold water. Soil water content in the treatment of A. pintoi biomulch was not different from other biomulch treatments.<br /><br />Keywords: biomass production, cover ground, soil depth, soil water content<br /><br /><em><br /></em><em></em>

2021 ◽  
Vol 34 (4) ◽  
pp. 887-894
Author(s):  
GUSTAVO HADDAD SOUZA VIEIRA ◽  
ARILDO SEBASTIÃO SILVA ◽  
ARUN DILIPKUMAR JANI ◽  
LUSINERIO PREZOTTI ◽  
PAOLA ALFONSA VIEIRA LO MONACO

ABSTRACT This study aimed to determine how crop residue placement and composition would affect soil water content and temperature during the dry season in the central region of Espírito Santo state, Brazil. A 19-week field study was conducted from April to August 2017. A 2 x 4 factorial study with four replications was implemented using a randomized complete block design. Factors were soil management [conventional tillage (CT) and no soil disturbance (ND)] and residue amendment [maize (Zea mays L.), sunn hemp (Crotalaria juncea L.), a maize-sunn hemp mixture, and a no amendment control]. Soil water content and temperature were measured weekly at predetermined soil depth intervals. Soil water content was higher in ND plots amended with surface residues than under all other treatments in the 0 to 0.05 m depth range. All residue amendments in this range were equally effective in conserving soil water. Surface residues reduced soil temperature by up to 8.4 °C relative to the control in ND plots. Incorporating residue amendments by CT cancelled all temperature-moderating benefits provided by surface residues. These results indicate that surface residues from cereals, legumes, or cereal/legume mixtures are equally effective in conserving soil water and moderating soil temperature during the dry season. Additional research is needed to determine how improved soil environmental conditions, generated by surface residues, would affect nutrient acquisition and crop performance.


2014 ◽  
Vol 18 (4) ◽  
pp. 459-465 ◽  
Author(s):  
Cristiano Zerbato ◽  
Vicente F. A. Silva ◽  
Luma S. Torres ◽  
Rouverson P. da Silva ◽  
Carlos E. A. Furlani

The largest losses in mechanical harvesting of peanuts occur during the stage of digging, and its assessment is still incipient in Brazil. Therefore, the aim of this study was to evaluate the quantitative losses and the performance of the tractor-digger-inverter, according to soil water content and plant populations. The experiment was conducted in a completely randomized block design with a factorial scheme 2 x 3, in which the treatments consisted of two soil, water content (19.3 and 24.8%) and three populations of plants (86,111, 127,603 and 141,144 plants ha-1), with four replications. The quantitative digging losses and the set mechanized performance were evaluated. The largest amount of visible and total losses was found in the population of 141.144 plants ha-1 for the 19.3% soil water content. The harvested material flow and the tractor-digger-inverter performance were not influenced by soil water content and plant population. The water content in the pods was higher in 24.8% soil water content only for the population of 86,111 plants ha-1; the yield was higher in the populations of 141.144 and 127.603 plants ha-1, in the 19.3 e 24.8% soil water content, respectively.


Author(s):  
Reynaldo Solis ◽  
Marlon Pezo ◽  
Luis Arévalo ◽  
Ceila Lao ◽  
Julio Alegre ◽  
...  

ABSTRACT Sacha inchi (Plukenetia volubilis) is an oilseed crop that has gained importance due to the high contents of proteins and unsaturated fatty acids in its seeds. This study aimed at evaluating the growth characteristics of five leguminous species (Crotalaria juncea,Centrosema macrocarpum,Arachis pintoi,Cannavalia ensiformis and Phaseolus vulgaris) used as cover crops, as well as determining their influence on the sacha inchi yield. A complete randomized block design, with three blocks, was used. C. macrocarpum and C. ensiformis were the most appropriate cover crop species for the local edaphoclimatic conditions because they reached 100 % of soil coverage at six months, in addition to controlling the weeds growth and protecting the soil from erosion. Furthermore, the total leaf biomass at six months was significantly higher in C. macrocarpum, what allowed improving the soil fertility through nitrogen cycling. The use of leguminous cover crops, mainly C. macrocarpum, positively influenced the sacha inchi yield.


2017 ◽  
Vol 9 (11) ◽  
pp. 88
Author(s):  
E. T. Sebetha ◽  
A. T. Modi

Soil water loss through evaporation plays a role on low crop productivity and this is due to poor cropping systems and soil surface coverage. The study was carried out at three locations of North-West province of South Africa, which were Potchefstroom, Taung and Rustenburg during 2011/12 and 2012/13 planting seasons. The experimental design was a factorial experiment laid out in a randomised complete block design (RCBD) with three replicates. The experiment consisted of five cropping systems, which were monocropping cowpea, monocropping maize, cowpea followed by maize in rotation, maize followed by cowpea in rotation and intercropping maize-cowpea. The three crop growth stages compared in this study were before tasselling/flowering, during tasselling/pod formation and during physiological maturity of maize and cowpea. Soil was sampled for the 0-0.15, 0.15-0.3, 0.3-0.6 and 0.6-0.9 m depth increments and soil water content determined using the Gravimetric method. The crop growth stage before tasselling/flowering in maize/cowpea had significantly (P < 0.05) higher water content of 10.2, 10.8, 12.5 and 13.3% at the depth of 0-0.15, 0.15-0.3, 0.3-0.6 and 0.6-0.9 m respectively. Soil collected at Rustenburg and Potchefstroom had significantly (P < 0.05) higher water content of 13.5 and 10.2; 15.9 and 10.9; 18.3 and 12.8; 18.4 and 14.5% at the depths of 0-0.15, 0.15-0.3, 0.3-0.6 and 0.6-0.9 m respectively. Monocropping cowpea plots had significantly (P < 0.05) higher water content of 12.4% than other cropping systems at the soil depth of 0.3-0.6 m. Monocropping plots of cowpea had the ability to hold soil water and this depends on the type of cowpea cultivar and canopy cover. The stage before tasselling/flowering of maize-cowpea (V10/Vn) was found to have high soil water content. Soil water content differs across locations due to different soil physical properties.


Author(s):  
I Nyoman Rai ◽  
I Ketut Suada ◽  
M. Praborini ◽  
I Wayan Wiraatmaja

Cultivation of organic snake fruit in Bali which is done on dry land with the irrigation depends on rainfall and the fertilization generally only uses uncertain amount of fallen leaves, it reduces the productivity, quality, and continuity of fruit production over time. In rhizosphere of snake fruit there are various types of indigenous endomycorrhiza that potentially can be developed as biofertilizer, but as a biofertilizer, the low number of spores population for inoculum becomes a limiting factor in using indigenous endomycorrhiza. The effort that can be done are to propagate the spores by giving water stress treatment. This study aimed to obtain the best rhizosphere location of snake fruit as the source of spores and the level of soil water content to multiply the spores. The research was conducted in the green House, Farm Station, Agriculture Faculty, Udayana University at Jalan Pulau Moyo, Denpasar, from October 2017 to January 2018. The spore propagation used nested experiment with Randomized Block Design patterns. The treatments were rhizosphere location as the source of indigenous endomycorrhizas spore consists of three levels (Bebandem District Karangasem Regency, Payangan District Gianyar Regency, and Pupuan District Tabanan Regency) and soil water content consists of three levels (100%, 70%, and 40% field capacity). The results of the research showed that the source of indigenous endomychorrizae from snake fruit rhizosphere in Payangan District gave the highest number of spores found and the highest percentage of the spore increase after propagation. While in the soil water content treatments, the highest number of spores found and the percentage of the spore increase after propagation were obtained at soil water content of 40% field capacity. The percentage of root infections from different sources of indigenous endomychorrhizae and different levels of soil water content is same i.e 100%.


2021 ◽  
Vol 886 (1) ◽  
pp. 012131
Author(s):  
Siti Aisyah ◽  
Chairani Hanum ◽  
Revandy Iskandar M Damanik

Abstract The study was aimed to find out the varieties of Gogo rice that are resistence of water supply and the low of light intensity and giving information about the varieties that are resistence of double water stress. The study was conducted on November 2020 to May 2021 and used a Randomized Block Design (RAK) with three factors. The first factor is soil water content of D1 40%, D2 60%, D3 80%., the second is shade intensity of N0 0%, N1 20%, N2 40%, and N3 60%. and the third is the varieties of V1 Situbagendit, V2 Red Sigambiri, V3 Inpago 8, V4 White Sigambiri. The result showed that there were differences of growing in different treatnent where the highest of plant of D3N0V1 is 54,73, the highest number of leaves of D3N0V1 is 7.03 and the highest tillers of D3N0V1 is 6.01. On each lowest observation of D1N2V4, the plants died at the age of 12 mds. The findings of the study showed that the soil water content of 80 %, and shade intensity of 0 % are significant effect on Gogo Varieties of Situbagendit.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 218
Author(s):  
Cameron M. Ogilvie ◽  
Waqar Ashiq ◽  
Hiteshkumar B. Vasava ◽  
Asim Biswas

Plant roots are an integral part of soil ecosystems and contribute to various services, including carbon and nutrient cycling, weathering, and soil formation. They also modify soil physical properties (e.g., soil water content, pore size distribution, and bulk density) and impact subsequent crops’ growth. Cover crops have been reported to improve soil and environmental quality by reducing nutrient losses, improving soil water content, and increasing soil organic matter. Understanding the complex interactions between cover crop roots and soil (RS) is of utmost importance. However, cover crop RS interactions have not been critically reviewed. In this article, we investigated the nature of cover crop physical RS interactions and explored the emerging technologies for their study. We also assessed technologies that may be readily applied to the study of physical RS interactions in cover crop systems and discussed ways to improve related research in the future.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11766
Author(s):  
Mao Yang ◽  
Runya Yang ◽  
Yanni Li ◽  
Yinghua Pan ◽  
Junna Sun ◽  
...  

The aim of this study was to find a material suited for the prevention of evaporative water loss and salt accumulation in coastal saline soils. One-dimensional vertical water infiltration and phreatic evaporation experiments were conducted using a silty loam saline soil. A 3-cm-thick layer of corn straw, biochar, and peat was buried at the soil depth of 20 cm, and a 6-cm-thick layer of peat was also buried at the same soil depth for comparison. The presence of the biochar layer increased the upper soil water content, but its ability to inhibit salt accumulation was poor, leading to a high salt concentration in the surface soil. The 3-cm-thick straw and 6-cm-thick peat layers were most effective to inhibit salt accumulation, which reduced the upper soil salt concentration by 96% and 93%, respectively. However, the straw layer strongly inhibited phreatic evaporation and resulted in low water content in the upper soil layer. Compared with the straw layer, the peat layer increased the upper soil water content. Thus, burying a 6-cm-thick peat layer in the coastal saline soil is the optimal strategy to retain water in the upper soil layer and intercept salt in the deeper soil layer.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1227
Author(s):  
Moein Farahnak ◽  
Keiji Mitsuyasu ◽  
Takuo Hishi ◽  
Ayumi Katayama ◽  
Masaaki Chiwa ◽  
...  

Tree root system development alters forest soil properties, and differences in root diameter frequency and root length per soil volume reflect differences in root system function. In this study, the relationship between vertical distribution of very fine root and soil water content was investigated in intact tree and cut tree areas. The vertical distribution of root density with different diameter classes (very fine <0.5 mm and fine 0.5–2.0 mm) and soil water content were examined along a slope with two coniferous tree species, Cryptomeria japonica (L.f.) D. Don and Chamaecyparis obtusa (Siebold et Zucc.) Endl. The root biomass and length density of very fine roots at soil depth of 0–5 cm were higher in the Ch. obtusa intact tree plot than in the Cr. japonica intact plot. Tree cutting caused a reduction in the biomass and length of very fine roots at 0–5 cm soil depth, and an increment in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot one year after cutting. However, very fine root density of the Cr. japonica intact tree plot was quite low and the soil water content in post-harvest areas did not change. The increase in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot could be caused by the decrease in very fine roots at 0–5 cm soil depth. These results suggest that the distribution of soil water content was changed after tree cutting of Ch. obtusa by the channels generated by the decay of very fine roots. It was also shown that differences in root system characteristics among different tree species affect soil water properties after cutting.


Sign in / Sign up

Export Citation Format

Share Document