scholarly journals Pemanfaatan Biochar sebagai Pembawa Rhizobium terhadap Pembentukan Bintil Akar dan Hasil Tanaman Kedelai (Glycine max L. Merril)

2021 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
NI PUTU NENA LUSIANA ◽  
ANAK AGUNG NGURAH GEDE SUWASTIKA ◽  
I WAYAN DANA ATMAJA ◽  
ANAK AGUNG ISTRI KESUMADEWI

The Utilization of Biochar as a Carrier of Rhizobium for the formation of root nodules and Yield of Soybean (Glycine max L. Merril). This study aims to determine the effect of the type of raw materials and particle size of biochar as a Rhizobium carrier on the formation of nodules in soybean plants. This research was conducted from September to November 2020 at the Experimental Station and Laboratory of Soil and Environmental Sciences, Faculty of Agriculture, Udayana University. The research design used was a randomized block design with nested patterns with 2 factorials and 3 replications. The treatment factors consisted of B1 = bamboo biochar, B2 = albasia wood biochar, B3 = corncob biochar, B4 = young coconut skin biochar, P1 = (0,15-0,50 mm), P2 = (>0,50-1,68 mm), P3 = (>1,68-3,36 mm). The parameters observed included effective nodule, nodule size, total bacterial population, ammonium, nitrate, and plant yield. The result of the analysis showed that the type of biochar raw materials had a very significant effect on the parameters of effective nodules, nodules size, total bacterial population and plant yield, but had no significant effect on soil chemical parameters. The treatment of biochar particle size had a very significant effect on the parameters of effective nodules, total bacterial population, and plant yield, and had a significant effect on the size of nodules, but had no significant effect on soil chemical parameters. The conclusion of this study is that the type of raw material for albasia wood biochar is effective as a Rhizobium carrier, which is indicated by the high number of effective nodules, nodules size and total bacterial population of 0,15-1,68 mm particles.

2018 ◽  
Vol 45 (3) ◽  
pp. 263
Author(s):  
Endriani , ◽  
Munif Ghulamahdi ◽  
Dan Eko Sulistyono

Soybean (Glycine max L. Merrill) demand is high in Indonesia, however national production is low, therefore improving productivity is important. The research was aimed to determine the effect of application of biofertilizer containing N- fixing and P- solubilizing bacteria on the growth and production of soybean in lowland swamp. The experiment was conducted  at  Labuhan Ratu VI Village, District of Labuhan Ratu, East Lampung Regency from September to December 2014. The experiment was arranged in factorial randomized block design with three replications. N and P fertilizers were applied in four levels. Doses of N were 0, 11.25, 22.50, 33.75 kg ha-1, doses of P were 0, 36, 72, 108 P2O5 kg ha-1, in combination with and without biofertilizer application. The results showed that interaction between biofertilizer and N significantly affected number of branches and number of leaves at maximum vegetative phase. The influence of three types of fertilizer had no significant effect on the productivity of soybean in lowland swamp with soil pH of 7.0 and medium soil fertility. It is recommended to apply Biofertilizer + 11,25 kg N ha-1 + 36 kg P2O5 ha-1 to obtain high soybean production in lowland swamp area.<br /><br />Keywords: nitrogen, phosphate, productivity, soil fertility<br /><br />


2017 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Siti Rodiah ◽  
Zulfatunnisa Zulfatunnisa ◽  
Sumadi Sumadi ◽  
Anne Nuraini ◽  
Meddy Rachmadi ◽  
...  

The variation of the seed size in each species and individuals might be from of difference species adaptation for  a difference environment. This difference may also arise from the constraints of limited formation of seed size. The use of adaptive ciltivars on the growth environment is very influential on the succes in the farm field. This research was aimed to find the adaptation of phase and size seed of two cultivars of soybeans in Jatinangor and Cikajang. This research was held in Jatinangor (Sumedang regency) and Cikajang (Garut regency) from April to July 2016. The design that used in this research was Randomized Block Design (RBD) and Duncan at 5% rate. Improved cultivars that tested in this research were placed at Grobogan and Anjasmoro which were repeated 5 times. The results of experiment showed that adaptation of size seed showed of 100 grains and large seeds. The low temperature condition can increase of variability of seed size. Heterogeneity of environment can not sustain the size of soybean seed. Genetic and environment factors influence significantly for weight of 100 grains and seed size Grobogan in Jatinangor. The weight of 100 grains Grobogan in Jatinangor and Cikajang haved a greater than Anjasmoro. Environmental factors influence yield of soybean, weight of 100 grains of cultivars in Cikajang haved a greater than Jatinangor caused by the seed size.


Author(s):  
Sandeep Kumar ◽  
Javeed Ahmad Wani ◽  
Narinder Panotra ◽  
Bilal Ahmad Lone ◽  
Sameera Qayoom ◽  
...  

A field experiment was conducted at KVK, Srinagar during two consecutive kharif seasons of 2010 and 2011 to study the “Effect of phosphorus and sulphur on nutrient and amino acids content of soybean [Glycine max (L.) Merill] under Eutrochrepts”. The experiment was laid down under 16 treatment combinations viz four levels of phosphorus (0, 30, 60, 90 kg P2O5 ha-1) and four levels of sulphur (0, 15, 30, 45 kg S ha-1) in randomized complete block design with three replication . At higher levels of phosphorus application, Zn content of seed decreased and it was maximum at 30 kg P2O5 ha-1. With application of 45 kg S ha-1, N, P, K, Ca, Mg and S content in seed was 6.54, 0.555, 1.881, 0.329, 0.434 and 0.501 per cent respectively while as Zn, Fe, Cu, Mn was 109.99, 99.96, 2.82 and 3.73 mg kg-1, respectively. A significant interaction between P and S on macro as well as micronutrient content except Zn in seed was observed. Combined application of phosphorus and sulphur further enhanced the nutrient content of soybean seed. Combined application of phosphorus and sulphur enhanced the crude protein and oil content in soya seed 1. Individual as well as interaction effect of P and S was significant in enhancing the sulphur containing amino acids viz., cystine cystein and methionine content of soybean seed. Combined application of 45 kg S and 90 kg P2O5 ha-1 recorded significantly higher carbohydrate content (23.49%) in soybean seed. Application of increasing levels of phosphorus and sulphur resulted in gradual increase in linoleic (Omega-6) and linolenic acid (Omega-3).


SoilREns ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Anni Yuniarti ◽  
Yuliati Machfud ◽  
Eso Solihin ◽  
Yogi Sudirman ◽  
Apong Sandrawati

Inceptisol is a widespread soil order with low fertility. Hence it is necessary to improve its quality status through the application of chemical and biological fertilizers. The main objecttive of this study is to determine the effect of NPK fertilizer and biofertlizer consortia (BC) combinations in Inceptisols towards N and P availability in soil and uptake by soybean (Glycine max L.). Experiments were carried out from April to August 2016 at Ciparanje Experimental Farm, Faculty of Agriculture, Universitas Padjadjaran, Jatinangor, Sumedang at the approximate altitude of 720 meters above the sea level. Randomized Block Design experimental design consisted of ten treatments and three replications was used in this study. Treatments consisted of control (no treatment), Recommended NPK dosage, 0 NPK + 1 BC, ¼ NPK + 1 BC, ½ NPK + 1 BC, ¾ NPK + 1 BC, 1 NPK + 1 BC, ¾ NPK + ¼ BC, ¾ NPK + ½ BC and also ¾ NPK + ¾ BC. Experimental results showed that the combination of NPK fertilizer and soybean-spesific biofertilizer consortium increased soil total phosphate content,  nitrogen uptake by plant, and soyben yield significantly.  Keywords: Biofertilizer, Soybean, total-N, Uptake of N, Inceptisols


Author(s):  
Abito Asres ◽  
Solomon Tiruneh

The experiment was conducted in three locations Jari, Chefa and Sirinka of Eastern Amhara to select the best performing varieties, in terms of biomass yield, chemical composition, haulm yield, seed yield and other agronomic characteristics of Glycine max (L.) Merrill grown under the rain- fed condition of lowland areas of Eastern Amhara in a randomized complete block design with tree replications. Twelve released soybean varieties were Afgat ,Belesa-95, Boshe , Cheri , Dhidhessa, Gishama , Gizo, Korme, Pawe-03, katta, Wegayen and Wollo were used as a treatments. The seeds were planted in 40 cm between rows and 10 cm between plants on a plot size of 3.2m*4m. Spacing between blocks and plots were 1 and 0.5m, respectively. The seed rate was 60 kg/ha and a fertilizer rate 100 kg/ha NPS was applied during seed planting. The combined analysis of variance over two years at location Jari for dry matter yield of varieties Afgat, Gizo, Pawe-03, Wogayen and Wollo were significantly higher as compared to other soybean varieties. The combined analysis across locations at Jari and Sirinka (2019-second year) showed that varieties Afgat, Gishama, Gizo, Pawe-03, Wogayen and Wollo had higher dry matter yield and varieties Gishama (3.97 t/ha), Gizo (3.60 t/ha), Pawe-03 (4.04 t/ha) and Wogayen (3.36 t/ha) had higher haulm yield as compared with other varieties. The combined analysis across locations at Jari and Sirinka (2019) showed that varieties Pawe-03(2951 kg/ha), Gizo (2862 kg/ha), Afgat (2859 kg/ha), Gishama (2654 kg/ha),Wollo (2461 kg/ha) and Wogayen (2404 kg/ha) had higher seed yield as compared with other varieties. The variety Wollo gave higher crud protein content in two locations (Jari and Sirinka) .Therefore, varieties Afgat, Pawe-03 and Wollo were recommends for the given areas of Jari , Chefa, Sirinka and could be produced in similar environments for the best of produced optimal amount of dry matter, haulm and seed yield and good protein supplement for production of ruminants.Thus, further researches will be needed to investigate on the utilization of livestock.


Jurnal BIOMA ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 41 ◽  
Author(s):  
Priskilla Purnaning Putri ◽  
Adisyahputra Adisyahputra ◽  
Asadi Asadi

Abstract Soybean (Glycine max L.) is annual crop that have high morphologies and yield components diversity. The research was conducted at the first season of 2011, the objective of the research were to find morphological, yield, and yield component of Soybean germplasm (Glicine max L.). The research was carried out at experimental station BB-BIOGEN Citayam, Depok, and laboratory of Gene Bank BB-BIOGEN. The experiment used randomized block design with 100 different accessions and three replications for each accession. Based on the observation, the morphological characters have many visual forms. They are as follows: growth percentage in which 19.33 – 99%; growth types were determinate and indeterminate, the leave form was triangle to sharp; purple and white flowers; yellow and black seeds color. The range of values for each characteristic component are as follows: plant height 29,23 – 104,25 cm; number of pods per plant was 23,6 – 99,82; flowering time 33 – 47 days after planting; 100 seed weight 5,98 – 20,77 gram; maturing time 75 – 96,67 days after planting; root nodule’s weight 0,004 – 0,109 gram; seed’s weight 3,15 – 11,45 gram/plant. Among the accessions, the highest yield was shown by B 4323 (643,27 gram/3,6 m2). Significant correlation was shown between soybean’s yield components and yield which were plant’s height, growth percentage, numbers of main stem’s node, numbers of pods, seeds weight for each plant and root nodule’s weight. 100 seeds weight showed significant negative correlation with soybean components.   Key words: germplasm, morphological characteristics, soybean, yield components


2019 ◽  
Vol 47 (2) ◽  
pp. 149-155
Author(s):  
Hapsoh , ◽  
Wardati , ◽  
Dan Hairunisa

The productivity of soybeans (Glycine max (L.) Merril) in Indonesia is still low, and therefore it is necessary to increase productivity through management of soil fertility such as fertilizer application. This study aimed to determine the effect of single compost, NPK, and their interactions on soybean productivity. The study was conducted in the experimental station of the Faculty of Agriculture, Universitas Riau from May to September 2017. The experiment used a factorial design arranged in a randomized block design. The first factor consisted of: without compost, oil palm empty fruit bunch compost (TKKS) and rice straw compost. The second factor consisted of: without NPK fertilizer, NPK dose 125 kg ha-1 and NPK dose 250 kg ha-1. Data analyzed statistically and further evaluation using Duncan’s multiple range test. The single treatment of compost increased the nutrient content of leaf N 3.1%, leaf K 24%, percentage of filled pods 3.45%, number of seeds each plant 14%, seed weight each plant 15% and weight of 100 seeds 3.20%. The single treatment of NPK fertilizer also increased leaf N by 4.67%, leaf P by 9% and leaf K by 4%, number of filled pods as 27%, percentage of filed pods with 5%, number of seeds each plant 29%, seed weight each plant 27%, production each m2 by 26% and weight 100 seeds by 7%. Interactions between treatments increased the levels of N, P, and K and percentage of filled pods. This research provides information for farmers to utilize compost in order to reduce the use of inorganic fertilizers.Keywords: filled pods, nutrient leaf content, leaf N level, leaf P level, seed weight


Author(s):  
John Bokaligidi Lambon ◽  
Joseph Sarkodie- Addo ◽  
James Mantent Kombiok

Two experiments were conducted in the Savelugu-Nanton Municipality of the Northern Region of Ghana in 2012 and 2013 to assess the effect of N fertilizer on growth, N remobilization and grain yield of three local varieties of soybean (Glycine max [L] Merill). The experiments were a 3 x 4 factorial laid in Randomized Complete Block Design (RCBD) with four replications. Factor A was soybean varieties (Jenguma, Quarshie, Ahotor); Factor B was 0, 15, 30 and 45 kg N ha-1. The experimental fields were planted manually on the flat by drilling and later thinned to 2 plants hill-1 at 0.50 m × 0.10 m with a population of about 400 000 plants ha-1. Growth and yield parameters measured were plant height, nodule number plant-1, nodule dry weight plant-1, percent nodule effectiveness, number of pods plant-1, number of seeds pod-1, 100 seed weight, harvest index and grain yield. The results showed that the control recorded lower figures in all growth parameters. Nitrogen remobilization was also observed in all plots, which indicate that soybean needs greater levels of N during grain filling. Again, N remobilization and soybean yield were highest in the 45 kg N ha-1 treatment compared to the other treatments. However, considering the overall yields, farmers in the study area should be advised to adopt starter N fertilization of soybean for higher yields as the soils are highly degraded in soil fertility.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1326
Author(s):  
Elham Yusefi-Tanha ◽  
Sina Fallah ◽  
Ali Rostamnejadi ◽  
Lok Raj Pokhrel

Understanding the potential uptake and biodistribution of engineered nanoparticles (ENPs) in soil-grown plants is imperative for realistic toxicity and risk assessment considering the oral intake of edibles by humans. Herein, growing N-fixing symbiont (Bradyrhizobium japonicum) inoculated soybean (Glycine max (L.) Merr.) for a full lifecycle of 120 days, we assessed the potential influence of particle size (25, 50, and 250 nm) and concentration (0, 50, 100, 200, and 500 mg/kg soil) of Copper oxide nanoparticles (CuONPs) on: (1) root system architecture, (2) soil physicochemical attributes at the soil–root interface, and (3) Cu transport and accumulation in root, stem, leaf, and seed in soybean, and compared them with the soluble Cu2+ ions and water-only controls. Finally, we performed a comparative assessment of total seed Cu levels in soybean with other valuable food sources for Cu intake and discussed potential human health implications. Results showed particle size- and concentration-dependent influence of CuONPs on Cu uptake and distribution in root, stem, leaf, and seed. Alterations in root architecture (root biomass, length, volume, and area) were dependent on the Cu compound types, Cu concentrations, and their interactions. Concentration–response relationships for all three sizes of CuONPs and Cu2+ ions were found to be linear. Furthermore, CuONPs and Cu2+ ions had inhibitory effects on root growth and development. Overall, soybean responses to the smallest size of CuONPs–25 nm—were greater for all parameters tested compared to the two larger-sized CuONPs (50 nm, 250 nm) or Cu2+ ions. Results suggest that minor changes in soil-root physicochemical attributes may not be a major driver for Cu uptake in soybean. Cu bioaccumulation followed the order: root > leaf > stem > seed. Despite reduction in root architecture and seed yield, the smallest size CuONPs–25 nm led to increased total seed Cu uptake compared to the larger-sized CuONPs or Cu2+ ions. Our findings also suggest that soil amendment with CuONPs, and more so with the smallest size of CuONPs–25 nm—could significantly improve seed nutritional Cu value in soybean as reflected by the % Daily Values (DV) and are rated “Good” to “Very Good” according to the “World’s Healthiest Foods” rating. However, until the potential toxicity and risk from CuONP-fortified soybean seed ingestion is characterized in humans, we caution recommending such seeds for daily human consumption when addressing food Cu-deficiency and associated diseases, globally.


2019 ◽  
Vol 24 (2) ◽  
pp. 97-107
Author(s):  
Yunia Vella Alfani ◽  
Pudjawati Suryatmana ◽  
Ade Setiawan

This study was aimed at determining the increasing of growth and production of soybean crops by giving Azotobacter sp. and additive materials such as coconut water, molasses, and bran. This research was conducted on Januari 2018 to April 2018 at Ciparanje Experimental Field Faculty of Agriculture. Universitas Padjadjaran, Jatinangor, Sumedang, West Java Province, on ± 774 meters above sea level (asl) using single factor randomized block design with 10 treatments; Azotobacter sp. and additive materials combination such as coconut water, molasses, and bran in three repetitions. The observations on the parameters observed in the final vegetative phase were on plant height, chlorophyll content, and population of Azotobacter sp. using Total Plate Count (TPC) method.The results show that the application of combination additives materials and Azotobacter sp. effect on populations Azotobacter sp., chlorophyll content, plant height and number of soybean pods (Glycine max L.). Application of coconut water independently, water added with Azotobacter sp., and combination of additive with Azotobacter sp. can give the best effect to the content of chlorophyll, plant height, and soybean crops components (Glycine max. L.).PENGARUH KOMBINASI BAHAN ADITIF DAN Azotobacter sp. TERHADAP PERTUMBUHAN Glycine max. L.Penelitian ini bertujuan untuk mengetahui pertumbuhan dan produksi tanaman kedelai dengan memberikan Azotobacter sp. dan aditif air kelapa, molase, serta dedak. Penelitian ini dilaksanakan pada Januari 2018-April 2018 di Kebun Percobaan Ciparanje Fakultas Pertanian Universitas Padjadjaran, Jawa Barat pada ± 774 meter di atas permukaan laut (dpl). Penelitian ini menggunakan rancangan acak kelompok dengan 10 perlakuan pemberian Azotobacter sp. dan aditif air kelapa, molase, serta dedak dengan tiga ulangan. Pengamatan terhadap parameter yang diamati pada fase vegetatif akhir yaitu tinggi tanaman, kandungan klorofil, dan populasi Azotobacter sp. dengan metode Total Plate Count (TPC). Hasil penelitian menunjukkan aplikasi kombinasi bahan aditif dan penambahan pupuk hayati Azotobacter sp. berpengaruh terhadap populasi Azotobacter sp., kadar klorofil, tinggi tanaman dan jumlah polong tanaman kedelai (Glycine max L.). Aplikasi air kelapa secara mandiri, air kelapa yang ditambahkan dengan Azotobacter sp., dan kombinasi bahan aditif dengan Azotobacter sp. dapat memberikan pengaruh terbaik terhadap kandungan klorofil, tinggi tanaman, dan komponen hasil tanaman kedelai (Glycine max. L.). 


Sign in / Sign up

Export Citation Format

Share Document