scholarly journals Green Construction Material: Polyethylene Waste Reinforce Concrete for Panel Application

Author(s):  
Andrie Harmaji ◽  
Siswanti Zuraida

Plastic Composite Panel (PCP) is an innovation in the field of materials that uses recycling plastic waste to construct composite cement panels. This material innovation is one of the solutionto answer environmental problems caused by plastic waste. Some previous studies mostly used plastic waste for concrete aggregates. Thus, making this study different from previous studies. The purpose of this study is to make a prototype of a PCP that is environmentally friendly with panel dimensions sample of 100 x 30 x 10 mm thick. The method used is an experimental test using materials in the form of polyethylene terephtalate (PET) from used water bottle and cement waste as well as testing its physical and mechanical properties carried out in the laboratory. Variations in PET used for testing materials are 0- 20%. In addition to mechanical properties, specific gravity and porosity test is carried out. The best results shows that 5% PET addition to cement paste increase the flexutral strength to 4.47 MPa compared to control sample which has 3.26 MPa. Porosity test shows that addition of 10% PET reduce the density of PCP to 63.64% compared to control sample that has 44.44%.

2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haiming Chen ◽  
Yangchen Xu ◽  
Donglei Zhang ◽  
Lingxia Huang ◽  
Yuntao Zhu ◽  
...  

This work is aimed to study the possibility of recycling plastic waste (polypropylene (PP)) as aggregate instead of sand in the manufacturing of mortar or concrete. For this, an experimental study was carried out to evaluate the influence of nano-SiO2 and recycled PP plastic particles' content on physical, mechanical, and shrinkage properties and microstructure of the mortars with recycled PP plastic particles. The sand is substituted with the recycled PP plastic particles at dosages (0%, 20%, 40%, and 60% by volume of the sand). The nano-SiO2 content is 5% by weight of cement. The physical (porosity, water absorption, and density), mechanical (compressive and flexural strength) and shrinkage properties of the mortars were evaluated, and a complementary study on microstructure of the interface between cementitious matrix and PP plastic particles was made. The measurements of physical and mechanical properties showed that PP-filled mortar had lower density and better toughness (higher ratio of flexural strength to compressive strength). However, the compressive strength and flexural strength of PP-filled mortar is reduced, and the porosity, water absorption, autogenous shrinkage, and dry shrinkage increased as compared to normal cement mortar. The addition of nano-SiO2 reduced the porosity, water absorption, and drying shrinkage of PP-filled mortar and effectively improved the mechanical properties, but increased its autogenous shrinkage. A microscopic study of the interfacial zone (plastic-binder) has shown that there is poor adhesion between PP plastic particles and cement paste. From this work, it is found that recycled PP plastic waste has a great potential to be a construction material. It can be used as partial replacement of natural aggregates instead.


2011 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Sari Mirad Noor

The need of log increace rapidly, mean while forest product decrease, so efficiency on wood process should be done wisely, in the other hand plastic waste is uncompossed material, become an environmental problems. This research aims to determine the impact of particles of type HDPE plastic wastes and twigs/branches of rubber on some physical and mechanical properties of wood. Physical properties have been tested for water content, density, thickness, and water absorption. Although mechanical properties tests were tough Broken/Module of Rufture (MOR) and the preservation of architecture/modulus of elasticity (MOE).     The raw materials used are polyethylene of high density of waste plastic and rubber adhesive urea formaldehyde branch branch. Experimental design used the randomized Completely Design (RCD) 5 x 4, in which each treatment became much like 5 times replicated).The treatment used is the diversity of the composition of the waste of plastic of different types of polyethylene of high density provides a significant effect on the content of water, water absorption, the density and the development of thickness. With regard to the persistence and the fracture of the arch determination not to give a significant effect.Keywords: physical and mechanical properties, particle board, HDPE plastic waste, branch/twig of  rubber.


2019 ◽  
Vol 69 (3) ◽  
pp. 205-209
Author(s):  
Sedigheh Kamali Moghadam ◽  
Mohammad Shamsian ◽  
Hosein Rezayi Shahri

Abstract The aim of this research is to show useful utilization of agricultural residues such as cotton stalks and branches of pistachio, pomegranate, and Haloxylon species with recycled plastic in manufacturing wood–plastic composite (WPC) panels. Wood–plastic panels were made from a combination of agricultural residues (as natural fiber) and recycled plastic (as resin) at 50 percent, and 60 percent by weight fiber loading. Density and dimensions of the panels were 0.61 g/cm3 and 350 by 350 by 14 mm, respectively. Physical and mechanical properties of the panels including thickness swelling, water absorption, static bending (modulus of rupture and modulus of elasticity ), and internal bond were investigated. Physical and mechanical properties of the WPC panels decreased with an increase in fiber content from 50 percent to 60 percent. Physical and mechanical properties of samples made with 50 percent plastic were higher than samples with 40 percent plastic. The best values of physical and mechanical properties of the WPC panels were found at 10 percent and 5 percent Haloxylon particle loading, respectively. The highest values of mechanical properties of WPC panels were found at 50 percent plastic and 5 percent Haloxylon particle loading.


2019 ◽  
Vol 303 ◽  
pp. 03002
Author(s):  
Brayan García ◽  
Camila Preciado ◽  
Mónica Bedoya ◽  
Oscar Mendoza

Guadua is a Colombian endemic type of grass belonging to the bamboo family. It can be considered an alternative construction material due to its physical and mechanical properties, as well as a sustainable source of timber due to its fast growing process and high availability in tropical countries. The Guadua is composed by the stem petiole or lower part, the stem base, and the stem. In turn, the stem is divided into sections separated by diaphragms that form knots, called culms. The distance between knots and the structure of the longitudinal fibers in the culms depend on the age of the plant. This implies a difficulty when determining the mechanical properties of the stem, since there are not specific standards for this purpose. In this work the mechanical properties of young samples of Angustifolia Kunt and Rayada Amarilla Guadua, of around 6 years of growth, were characterized. To account for the natural variability introduced by the presence of diaphragms, cylindrical and prismatic samples were extracted without knot, with one knot in the middle, and with one knot at each end. Cylindrical samples were used to measure compressive strength parallel to the fiber direction, while prismatic samples were used to measure tensile strength also parallel to the fiber direction and flexural strength by three point bending. Methodologies from conventional construction materials were adapted for this purpose. The obtained results allowed concluding that the Guadua samples present different mechanical properties depending on the position of the knots. Samples with a knot in the middle are more resistant to compressive stresses, while the samples without knot are more resistant to flexural and traction stresses. The samples with one knot at each end presented a more balanced behavior, being efficient when exposed to compression, traction and flexural stresses.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2917
Author(s):  
Everton dos Santos Barreto ◽  
Karina Vaz Stafanato ◽  
Markssuel Teixeira Marvila ◽  
Afonso Rangel Garcez de Azevedo ◽  
Mujahid Ali ◽  
...  

Ceramic-based wastes generated from different industrial activities have increasingly been reused as construction material incorporated into concrete. In general, these wastes just replace common concrete aggregates such as sand and gravel. In the present work, waste from clay brick industries composted of kaolinite minerals were for the first time evaluated for their potential to be reused as the pozzolan constituent of a cement for structural concrete. Initial standard testes revealed that the clay ceramic waste (CCW) displays high pozzolanicity. Concrete was then produced with 10 and 20 wt.% of CCW mixed with ordinary Portland cement (OPC) as its pozzolan constituent. Compression strength of these concretes and of pure OPC as a control sample were determined in standard tests after 14 and 28 days of curing. In addition, the corresponding density, water absorption, capillarity and percentage of voids were measured together with the evaluation of microstructural indices by scanning electron microscopy. The initial tests confirmed that the CCW is indeed an effective pozzolanic potential due to a chemical effect by reacting with CH to generate C–S–H. Moreover, the technological results proved that CCW might effectively replace the pozzolan cement constituent for structural concrete.


2021 ◽  
Vol 41 (2) ◽  
pp. 119-126
Author(s):  
José A. Gomes Neto ◽  
Normando P. Barbosa ◽  
Antônio L. Beraldo ◽  
Aluísio B. de Melo

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Fengky Satria Yoresta

This research is aimed to determine physical and mechanical properties of Ebony wood as a construction material. The physical and mechanical properties test is conducted based on ASTM D 143-94 code. The mean value of moisture content and specific gravity of Ebony wood is obtained 12,90% and 0,92 gr.cm-3 respectively. Meanwhile MOE, bending strength, compressive strength parallel to grain, shear strength, and tensile strength parallel to grain are 180.425,87 kg.cm-2; 1656,22 kg.cm-2; 861,55 kg.cm-2; 119,61 kg.cm-2; dan 2.319,03 kg.cm-2 respectively. Based on the test results, it can be concluded that Ebony wood is classified to Strength Class I due to PKKI 1961, so it can be recommended for use in heavy construction such as bridge and building structures Penelitian ini bertujuan menentukan sifat fisis dan mekanis kayu  Ebony sebagai material konstruksi. Pengujian sifat fisis dan mekanis dilakukan berdasarkan standar ASTM D 143-94. -3Nilai kadar air rata-rata kayu Ebony diperoleh sebesar 12,90% dan berat jenis 0,92 gr.cm . Sementara nilai rata-rata MOE, kuat lentur, kuat tekan sejajar serat, kuat geser, dan kuat tarik -2 -2 -2sejajar serat berturut-turut adalah 180.425,87 kg.cm ; 1656,22 kg.cm ; 861,55 kg.cm ; -2 -2119,61 kg.cm ; dan 2.319,03 kg.cm . Berdasarkan hasil penelitian dapat disimpulkan bahwa kayu Ebony tergolong kelas kuat I menurut PKKI 1961, sehingga dapat direkomendasikan untuk digunakan pada konstruksi-konstruksi berat seperti jembatan dan struktur bangunan.


Sign in / Sign up

Export Citation Format

Share Document