scholarly journals Mechanical Characterization of Angustifolia Kunth and Rayada Amarilla Guadua Bamboo

2019 ◽  
Vol 303 ◽  
pp. 03002
Author(s):  
Brayan García ◽  
Camila Preciado ◽  
Mónica Bedoya ◽  
Oscar Mendoza

Guadua is a Colombian endemic type of grass belonging to the bamboo family. It can be considered an alternative construction material due to its physical and mechanical properties, as well as a sustainable source of timber due to its fast growing process and high availability in tropical countries. The Guadua is composed by the stem petiole or lower part, the stem base, and the stem. In turn, the stem is divided into sections separated by diaphragms that form knots, called culms. The distance between knots and the structure of the longitudinal fibers in the culms depend on the age of the plant. This implies a difficulty when determining the mechanical properties of the stem, since there are not specific standards for this purpose. In this work the mechanical properties of young samples of Angustifolia Kunt and Rayada Amarilla Guadua, of around 6 years of growth, were characterized. To account for the natural variability introduced by the presence of diaphragms, cylindrical and prismatic samples were extracted without knot, with one knot in the middle, and with one knot at each end. Cylindrical samples were used to measure compressive strength parallel to the fiber direction, while prismatic samples were used to measure tensile strength also parallel to the fiber direction and flexural strength by three point bending. Methodologies from conventional construction materials were adapted for this purpose. The obtained results allowed concluding that the Guadua samples present different mechanical properties depending on the position of the knots. Samples with a knot in the middle are more resistant to compressive stresses, while the samples without knot are more resistant to flexural and traction stresses. The samples with one knot at each end presented a more balanced behavior, being efficient when exposed to compression, traction and flexural stresses.

2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2015 ◽  
Vol 1088 ◽  
pp. 656-659
Author(s):  
Ivaldo D. Valarelli ◽  
Rosane A.G. Battistelle ◽  
Barbara Stolte Bezerra ◽  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
...  

In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.


Author(s):  
Thais Helena Sydenstricker Flores-Sahagun ◽  
Kelly Priscila Agapito ◽  
ROSA MARIA JIMENEZ AMEZCUA ◽  
Felipe Jedyn

2013 ◽  
Vol 740 ◽  
pp. 759-762
Author(s):  
Hao Zeng Bao

In many areas, there are still a development road construction materials, traditionally, often use reinforced concrete, asphalt and other adhesive method to strengthen the low strength of rock and soil anti-freeze expansion coefficient; And now all countries in the world are studying how to use industrial production waste development of new composite materials. One of the most development potential, the production of industrial waste - slime. This paper USES the Russian kazan national construction university experimental methods, in the experiment to improve frost heaving soil physical and mechanical properties of the method for the synthesis of adhesive, based on the feasibility and applicability, environmental assessment of research and analysis, for the use of adhesive put forward a lot of reference value.


2021 ◽  
Vol 903 ◽  
pp. 11-16
Author(s):  
M.A. Manjunath ◽  
K. Naveen ◽  
Prakash Vinod ◽  
N. Balashanmugam ◽  
M.R. Shankar

Polymethyl methacrylate (PMMA) is one among few known photo-polymeric resin useful in lithography for fabricating structures having better mechanical properties to meet the requirement in electronics and biomedical applications. This study explores the effect of Photo Initiator (PI) concentration and also curing time on strength and hardness of Polymethyl methacrylate (PMMA) obtained by UV photopolymerization of Methyl methacrylate (MMA) monomer. The UV LED light source operating at the wavelength of 364 nm is used with Benzoin Ethyl Ether (BEE) as photo initiator. The curing of PMMA resin is supported with peltier cooling device placed at the bottom of the UV light source. The characterisation study of UV photo cured PMMA is analysed through nano indenter (Agilent Technologies-G200). The current work investigates the influence of PI concentration and curing time in achieving maximum mechanical properties for UV photopolymerized PMMA.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6795-6810
Author(s):  
Nurul Fatiha Osman ◽  
Paimon Bawon ◽  
Seng Hua Lee ◽  
Pakhriazad Hassan Zaki ◽  
Syeed SaifulAzry Osman Al-Eldrus ◽  
...  

Particleboard was produced by mixing oil heat-treated rubberwood particles at different ratios, with the goal of achieving high dimensional stability. Rubberwood particles were soaked in palm oil for 2 h and heat treated at 200 °C for 2 h. The treated particles were soaked in boiling water for 30 min to remove oil and were tested for chemical alteration and thermal characterization via Fourier-transform infrared spectroscopy and thermogravimetric analysis. Particleboard was fabricated by mixing treated rubberwood particles (30%, 50%, and 70%) with untreated particles (70%, 50%, and 30%, respective to previous percentages) and bonded with urea-formaldehyde (UF) resin. The results revealed that oil-heat treated particles had greater thermal stability than the untreated particles. The addition of oil heat treated particles improved the physical properties of the particleboard with no significant reduction in mechanical strength. However, this was only valid for ratios of 70% untreated to 30% treated and 50% untreated to 50% treated. When a ratio of 70% oil heat treated particles was used, both the physical and mechanical properties were reduced drastically, due to bonding interference caused by excessive oil content. Particleboard made with a ratio of 5:5 (treated to untreated) exhibited the best physical and mechanical properties.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2021 ◽  
Vol 14 ◽  
Author(s):  
Menandro N. Acda

Background: High-density fiberboards (HDF) are widely used as a substitute for solid wood in furniture, cabinet, construction materials, etc. Wood fibers are often used in the production of HDF but the use of renewable materials has gained worldwide interest brought about by global pressure to pursue sustainable development. An abundant source of renewable fibers that can be used to produce HDF is keratin from waste chicken feathers. The goal of the study is to investigate the use of keratin fibers in combination with wood fibers to produce HDF. No or limited studies have been conducted in this area and if successful, it could offer an alternative utilization for the billions of kilograms of waste feather produced by the poultry industry. HDF is a high volume feather utilization that can reduce pollution and help solve solid waste disposal problems in many countries. Methods: A series of dry-formed HDFs containing varying ratios of wood and keratin fibers bonded by polyurethane resin were produced. The physical and mechanical properties of the HDFs were determined. Results : The properties of the HDFs were affected by varying ratios of wood particles and keratin fibers. Dimensional stability as indicated by low levels of thickness swelling (<4.6%) and water absorption (<10%) was observed. Internal bond (2.47 MPa), MOE (5.8 GPa) and MOR (45 MPa) values were higher or comparable to those reported in the literature. Conclusion: HDF formed using a combination of wood and keratin fibers bonded together by polyurethane resin to as much as 50% keratin fibers were dimensionally stable with stiffness and strength above the minimum requirements for general use HDF as prescribed by EN 622-5.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1167 ◽  
Author(s):  
Mohammad H. Bhuiyan ◽  
Nicolaine Agofack ◽  
Kamila M. Gawel ◽  
Pierre R. Cerasi

In carbon storage activities, and in shale oil and gas extraction (SOGE) with carbon dioxide (CO2) as stimulation fluid, CO2 comes into contact with shale rock and its pore fluid. As a reactive fluid, the injected CO2 displays a large potential to modify the shale’s chemical, physical, and mechanical properties, which need to be well studied and documented. The state of the art on shale–CO2 interactions published in several review articles does not exhaust all aspects of these interactions, such as changes in the mechanical, petrophysical, or petrochemical properties of shales. This review paper presents a characterization of shale rocks and reviews their possible interaction mechanisms with different phases of CO2. The effects of these interactions on petrophysical, chemical and mechanical properties are highlighted. In addition, a novel experimental approach is presented, developed and used by our team to investigate mechanical properties by exposing shale to different saturation fluids under controlled temperatures and pressures, without modifying the test exposure conditions prior to mechanical and acoustic measurements. This paper also underlines the major knowledge gaps that need to be filled in order to improve the safety and efficiency of SOGE and CO2 storage.


Sign in / Sign up

Export Citation Format

Share Document