scholarly journals Induksi Mutasi Kara Benguk (Mucuna pruriens L.) Menggunakan Iradiasi Sinar Gamma

2020 ◽  
Vol 22 (2) ◽  
pp. 105
Author(s):  
Siti Hartati Yusida Saragih ◽  
Khairul Rizal ◽  
Kamsia Dorliana Sitanggang

<p>Breeding kara benguk with mutation induction techniques using gamma ray radiation is expected to produce genetic diversity. The purpose of the study is to determine the value of Lethal Dose 50 (LD50) and obtain the genetic diversity of the kara benguk plant. The research was conducted at PAIR BATAN and Agrotechnology experiment, Universitas Labuhanbatu from May-July 2020. The planting material used was kara benguk seeds. The method used was Randomized Complete Group Design (RCGD) with one factor which was dose of irradiation with six levels (0, 200, 250, 300, 350 and 400 Gy) and three replications. Each replication consisted of 20 plants, so there are a total of 360 experimental plants. The results showed that the value of LD50 kara benguk in 3 weeks after planting was 281,472 Gy. Gamma ray irradiation increases the high genetic diversity of plants and the number of leaves at a dose of 350 Gy.</p>

2019 ◽  
Vol 6 (1) ◽  
pp. 41
Author(s):  
Meynarti Sari Dewi Ibrahim ◽  
Enny Randriani ◽  
Laela Sari ◽  
Anne Nuraini

<p><em>High genetic diversity is one factor that determines the success of plant breeding. Mutation induction by gamma ray irradiation is one method to improve plant genetic diversity. This study aimed to 1) obtain growth regulators composition suitable in inducing embryogenic callus, 2) determine the effect of gamma ray irradiation on the growth and development of somatic embryos, and 3) obtain lethal dose (LD) <sub>20</sub> and <sub>50</sub> values in Robusta coffee  BP 436. The study was conducted at the Tissue Culture Laboratory, Industrial and Beverage Crops Research Institute,  from May 2017 to December 2018. Explants used were young leaves of Robusta coffee BP 436. Callus induction used ½ MS media with 2,4-D (4.52 μM) and 2-iP (0.00; 4.93; 9.86; 14.79; and 19.72 μM) treatment. Mutation induction was performed using gamma radiation dosed at 0, 10, 20, 30, 40, and 50 Gy treatments. The regeneration media was ½ MS containing GA<sub>3</sub> (0 and 1 mg/l). The study used a complete randomized design with 10 replications. The results showed the best combination of plant growth regulator to induce the callus was 2.4-D 4.52 μM + 2-iP 19.72 μM. The fresh weight of cultures was inhibited above 30 Gy, whereas the number of somatic embryos decreased at doses above 10 Gy. Addition of GA<sub>3</sub> 1 mg/l in regeneration media increased the number of somatic embryos in torpedo phase, but not in gamma irradiation exposed calluses. The LD<sub>20</sub> and LD<sub>50</sub> of Robusta coffee BP 436 are 16.81 and 28.52 Gy, respectively.</em></p>


2015 ◽  
Vol 2 (1) ◽  
pp. 26-32
Author(s):  
Syarifah Iis Aisyah ◽  
Yodi Marthin ◽  
M. Rizal M. Damanik

The objective of this study is to study the effect of gamma ray irradiation (15, 30, 45, and 60 gray (Gy) to determine Lethal Dose 50 (LD50) values, and to obtain new Coleus variances in a relatively short time. The study was conducted in a greenhouse at Cikabayan experimental field, Bogor Agricultural University, Darmaga, Bogor in May to July 2013. Gamma irradiation treatment significantly affected height, number of leaves, and number of nodes. Increasing the dose level of gamma irradiation tend to inhibit plant growth. LD50 for yellow/green, green/brown, variegated green/brown of Coleus blumei, and Coleus amboinicus Lour were 48.66, 65.2, 52.81, and 37.62 Gy respectively. C. amboinicus  irradiated at a dose level of 45 Gy had different leaf shapes compared to control. Keywords:  Coleus, gamma ray irradiation, LD50 values, ornamental plant, torbangun


2020 ◽  
Vol 5 (1) ◽  
pp. 46
Author(s):  
Yukarie Ayu Wulandari ◽  
Sobir Sobir ◽  
Syarifah Iis Aisyah

Cowpea (V. unguiculata L) has great potential as a nutritious food as a substitute for soybeans because it contains sufficient protein and low fat content. The diversity of cowpea is low so that need to increase diversity through the mutation induction of gamma ray irradiation. The study was carried out in the experimental garden of Pasir Kuda PKHT of IPB in February - May 2018 using a design of augmented in the Complete Group Design in a Randomized. The study was carried out using 90 putative mutant genotypes of M2 generation as the test genotype and KM4 genotype as a comparison which was repeated 10 times. The results showed that the M2 generation putative mutants showed diversity in the qualitative and quantitative characters of cowpea. High genetic diversity is shown in the character of plant height, harvest period, number of seeds / pods and weight of cowpea seeds / plants and high broad mean heritability values obtained on the character of stem length, flowering age, number of seeds / pods and weight of beans / plant nuts arrears. The result of kinship analysis showed thirteen different putative mutant genotypes with KM4 genotypes, namely T6599P, T8028P, T7525P, T7551P, T7520P, T6574P, T6533P, T7058P, T6577P, T6591P, T7062P, T7069P and T6561.


2020 ◽  
Vol 7 (3) ◽  
pp. 137
Author(s):  
Meynarti Sari Dewi Ibrahim ◽  
Enny Randriani

<p><em>The Arabica coffee is predominantly self-pollinated plants thereby contributing to low genetic diversity. The effort to increase the genetic diversity of Arabica coffee through crossing strategy is time-consuming, and induce mutation is necessary to enhance the rate of genetic variation. The aims of this study were to observe the effect of gamma-ray irradiation on the growth of apical and axillary bud cuttings and to determine the value of LD<sub>50</sub> on apical cuttings and Arabica coffee axillaries. The study was conducted at the Tissue Culture Laboratory, Industrial and Beverage Crops Research Institute, from January to December in 2018.. The planting material that was irradiated was Arabica coffee plantlets resulting from somatic embryogenesis propagation. Irradiation is carried out at the National Nuclear Energy Agency. The irradiated plantlets were cut and subcultured onto MS medium without growth regulators, 30 g L<sup>-1</sup> sucrose, and 2.5 g L<sup>-1</sup> phytagel were added. The design used a completely randomized design with 10 replications. The treatments tested were the dose of gamma-ray irradiation (0, 10, 20, 30, 40, and 50 Gy). The results showed that gamma-ray irradiation had an effect on all observed parameters. The mortality percentage of apical shoot cuttings began to be found at 30 Gy, while axillary cuttings at 20 Gy increased with an increasing dose of gamma-ray irradiation. The number of shoots and leaves varied between irradiation doses on both apical and axillary cuttings. The LD50 value of apical shoot cuttings was 36.80 Gy, while axillary cuttings were 22.24 Gy</em></p>


2017 ◽  
Vol 2 (2) ◽  
pp. 21-26
Author(s):  
Arya Widura Ritonga ◽  
Dewi Sukma

Increased phenotypic diversity is needed to increase the economic value of Aglaonema. However, information on increasing phenotypic diversity of Aglaonema using gamma-ray irradiation has not been widely known. This study aimed to investigate the effect of gamma ray irradiation treatment to the performances of two varieties of Aglaonema. This research was arranged factorially using randomized group design (RKLT) of two factors consisting of 8 combinations of treatments that are 4 level of irradiation dose and 2 Aglaonema varieties. The results showed that the induction of gamma ray irradiation decreased the % viable of the plants, the number of leaves, leaf length, leaf width, and the % green color as well as increased the % blue on the leaves of Aglaonema Butterfly and Aglaonema Siam Aurora. The interaction between dose of irradiation and aglaonema varieties was obtained in the % red of leaf color. Both of Aglaonema varieties had a high radiosensitivity with LD50 values ranged of 16.70 - 17.14 Gy


2015 ◽  
Vol 15 (1) ◽  
pp. 17
Author(s):  
Endang Sri Ratna ◽  
Kemas Usman ◽  
Indah Arastuti ◽  
Dadan Hindayana

Effect of gamma irradiation [60Co] against Bactrocera carambolae Drew & Hancock in vitro and in vivo. Bactrocera carambolae Drew & Hancock is one of the most important pests on guava fruit. According to a quarantine regulation in export-import commodities, irradiation treatment is a suitable methods for eradicating infested organism, which is relatively safe for the environment. The aim of this research was to determine mortality doses and an effective dose of [60Co] gamma ray irradiation for the eradication purpose, and its implication on the survival of fruit fly B. carambolae. Two irradiation methods of in vitro dan in vivo were carried out, by exposing egg and 3rd instar larvae of B. carambolae obtained from the laboratory reared insect. Eleven doses of gamma ray irradiation of 0, 30, 50, 75, 100, 125, 150, 175, 200, 300, 450, and 600 Gy were applied, respectively. The level of 99% fruit fly mortality was estimated by the value of LD99 using probit analysis and the number of larvae, pupae and adult survival were evaluated by analysis of variance (ANOVA), and the means compared by Tukey’s test, at 5% of significance level. These result showed that the effective lethal dose (LD99) of irradiation that could be successful to eradicate eggs and 3rd instar larvae in vitro were 2225 and 2343 Gy and in vivo were 3165 dan 3177 Gy, respectively. Almost all of the treated larvae survived and developed to pupae, therefore only the minimum irradiation dose of 30 Gy allowed the pupae to develop into adults.


2016 ◽  
Vol 7 (2) ◽  
pp. 102
Author(s):  
Indriati Husain ◽  
Agus Purwito ◽  
Ali Husni ◽  
Kikin H. Mutaqin ◽  
Slamet Susanto

<p class="Abstrak"><em>ABSTRACT</em><em></em></p><p><em>Mandarin’s SoE is national <del cite="mailto:Windows%207" datetime="2016-10-31T15:54"></del>variety originated <del cite="mailto:Windows%207" datetime="2016-10-31T15:55"></del><ins cite="mailto:Windows%207" datetime="2016-10-31T15:55"></ins>from Mount of Mutis, Sub District of SoE, of Timur Tengah Selatan (TTS) District, East Nusa Tenggara (NTT). The genetic diversity of citrus can be induced by gamma ray irradiation on embryogenic callus cells thus producing new mutants. <del cite="mailto:Windows%207" datetime="2016-10-31T15:55"></del><ins cite="mailto:Windows%207" datetime="2016-10-31T15:55"></ins><ins cite="mailto:Windows%207" datetime="2016-10-31T15:55"></ins><del cite="mailto:Windows%207" datetime="2016-10-31T15:56"></del>Genetic diversity detection can be <ins cite="mailto:Windows%207" datetime="2016-10-31T15:56"></ins>based on morphological and ISSR markers. The aim of this research was <del cite="mailto:Windows%207" datetime="2016-10-31T15:56"></del><ins cite="mailto:Windows%207" datetime="2016-10-31T15:56"></ins>to obtain information on the genetic diversity <del cite="mailto:Windows%207" datetime="2016-10-31T15:56"></del><ins cite="mailto:Windows%207" datetime="2016-10-31T15:56"></ins>on putative mutants<ins cite="mailto:Windows%207" datetime="2016-10-31T15:56"></ins> mandarin SoE induced by <ins cite="mailto:Windows%207" datetime="2016-10-31T15:57"></ins>gamma ray irradiation <del cite="mailto:Windows%207" datetime="2016-10-31T15:57"></del>based on morphology and markers ISSR. ISSR markers used are ISSR 1, 4, 6 and 8. Analysis of morphological diversity produced <del cite="mailto:Windows%207" datetime="2016-10-31T15:57"></del><ins cite="mailto:Windows%207" datetime="2016-10-31T15:57"></ins>a dendrogram with the level of similarity between individuals each irradiation dose 83-95% with <del cite="mailto:Windows%207" datetime="2016-10-31T15:57"></del><ins cite="mailto:Windows%207" datetime="2016-10-31T15:57"></ins>5-17% genetic distance. Dendrogram analysis based on the genetic diversity ISSR markers showed high levels of 51-100% similarity and genetic distance 0-49%. Individuals<del cite="mailto:Windows%207" datetime="2016-10-31T15:57"></del> samples obtained from<del cite="mailto:Windows%207" datetime="2016-10-31T15:58"></del><del cite="mailto:Windows%207" datetime="2016-10-31T15:58"></del><ins cite="mailto:Windows%207" datetime="2016-10-31T15:58"></ins> gamma irradiation, based <ins cite="mailto:Windows%207" datetime="2016-10-31T15:58"></ins>both morphological and ISSR markers, was different from individual's genetic make up before irradiation.</em></p><p class="Abstrak"><em>Keywords</em><em>:</em><em> cluster, </em><em>gamma ray</em><em>, genetic distance, genetic diversity</em><em>s, </em><em>similarity</em></p><p class="Abstrak"> </p><p class="Abstrak">ABSTRAK</p><p>Jeruk keprok SoE adalah jeruk varietas unggul nasional yang berasal dari Pegunungan Mutis, Kecamatan SoE, Kabupaten Timur Tengah Selatan (TTS), Provinsi Nusa Tenggara Timur (NTT). Keragaman genetik jeruk ini dapat diinduksi dengan iradiasi sinar gamma pada sel-sel kalus embriogenik untuk menghasilkan mutan yang solid. Deteksi keragaman genetik yang terbentuk dapat dilakukan secara morfologi maupun molekuler dengan marka ISSR. Tujuan Penelitian ini adalah untuk mendapatkan informasi mengenai keragaman genetik yang terjadi pada mutan harapan jeruk keprok SoE hasil iradiasi sinar gamma berdasarkan morfologi dan marka ISSR. Marka ISSR yang digunakan adalah ISSR 1, 4, 6 dan 8 pada beberapa mutan harapan jeruk keprok SoE. Analisis keragaman secara morfologi menghasilkan dendrogram dengan tingkat kemiripan antar individu masing-masing dosis iradiasi 83-95% dengan jarak genetik 5-17%. Dendrogram analisis keragaman genetik berdasar marka ISSR memperlihatkan tingkat kemiripan 51-100% dan jarak genetik 0-49%. Individu-individu sampel yang diuji hasil iradiasi gamma, baik secara morfologi dan marka ISSR, telah memiliki susunan genetik yang berbeda dari susunan genetik individu sebelum diiradiasi.</p><p>Kata kunci: grup, jarak genetik, kemiripan, keragaman, sinar gamma</p>


2008 ◽  
Vol 58 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Hiroyasu Yamaguchi ◽  
Akemi Shimizu ◽  
Konosuke Degi ◽  
Toshikazu Morishita

2021 ◽  
Vol 8 (1) ◽  
pp. 6-10
Author(s):  
Siti Hartati Yusida Saragih

Legume cover crop (Mucuna bracteata L.) is a creeper which is currently often used to increase soil fertility in plantation areas. This plant is a leguminous plant that can fix nitrogen nutrients in the soil. One of the M.bracteata plant breeding programs to increase diversity is mutation using gamma ray radiation. The research objective was to determine the level of radiosensitivity of legume cover crop using gamma ray irradiation. The research was conducted at PAIR BATAN using a Gamma Chamber 4000A irradiator and in agricultural experiment, Labuhanbatu University. The plant material used was M.bracteata seeds with irradiation doses of 0, 200, 250, 300, 350 and 400 Gy. This study uses a curve fit analysis program to calculate the LD50 value (Lethal dose 50). The results showed that the plant radiosensitivity by calculating the LD50 value of M.bracteata at the age of 2 Weeks After Planting) was 348.737 Gy. The higher the radiation dose given, the lower the percentage of growth.  Key words: diversity; leguminous; lethal dosage; mutation; gamma rays


2014 ◽  
Vol 1 (1) ◽  
pp. 2 ◽  
Author(s):  
Arini Maesaroh ◽  
Adi Amurwanto ◽  
Alice Yuniaty

Winged bean [Psophocarpus tetragonolobus (L.) DC] is a tropical plant that has some benefits and is very suitable to be cultivated in Indonesia. Study about diversity of winged bean is very important to support the future development of winged bean. Increased genetic diversity can be done through mutation. Gamma ray is often used for inducting mutations. One of way to observe genetic diversity resulted by molecular mutation is using RAPD method. The purpose of this study was to identify the genetic diversity of winged bean resulted by gamma ray irradiation. The method used in this study was an experiment by using RAPD technique. Samples used were plant leaves that had been induced by gamma ray with a wavelength of 20 Gy, 25 Gy, and control plants that were not induced by gamma ray. RAPD were done by ten primers that were OPA 9, OPA 10, OPA 13, OPA 18, OPB 2, 3 OPB, OPB 6, 7 OPB, OPB 10, and OPB 11. Data were analyzed using GenAlex 6.1 Program. The percentage of polymorphic loci of winged bean population control was 47,54%, while in the 20 and 25 Gy treatment were 62,30% and 54,10%, respectively. The values of genetic variation based on the calculation of allele frequencies were 0,236; 0,202 and 0,194 for treatment of 20 Gy, 25 Gy and for control plants, respectively. Meanwhile, the value of genetic distance ranged from 0.08 to 0.32.


Sign in / Sign up

Export Citation Format

Share Document