scholarly journals Beneficial Effects Of Powerinsole® Energy Pad: Investigations With Organ-Specific Cell Cultures

2020 ◽  
Vol 3 (1) ◽  
pp. 01-04
Author(s):  
Peter C Dartsch ◽  
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Prashant Rajbhandari ◽  
Douglas Arneson ◽  
Sydney K Hart ◽  
In Sook Ahn ◽  
Graciel Diamante ◽  
...  

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.


2015 ◽  
Vol 244 (6) ◽  
pp. 713-723 ◽  
Author(s):  
Tadanori Mammoto ◽  
Akiko Mammoto ◽  
Amanda Jiang ◽  
Elisabeth Jiang ◽  
Basma Hashmi ◽  
...  

2020 ◽  
Vol 9 (5) ◽  
pp. 1277 ◽  
Author(s):  
Ming-Long Chang ◽  
Yu-Jui Chiu ◽  
Jian-Sing Li ◽  
Khoot-Peng Cheah ◽  
Hsiu-Hu Lin

Both vasculature and myocardium in the heart are excessively damaged following myocardial infarction (MI), hence therapeutic strategies for treating MI hearts should concurrently aim for true cardiac repair by introducing new cardiomyocytes to replace lost or injured ones. Of them, mesenchymal stem cells (MSCs) have long been considered a promising candidate for cell-based therapy due to their unspecialized, proliferative differentiation potential to specific cell lineage and, most importantly, their capacity of secreting beneficial paracrine factors which further promote neovascularization, angiogenesis, and cell survival. As a consequence, the differentiated MSCs could multiply and replace the damaged tissues to and turn into tissue- or organ-specific cells with specialized functions. These cells are also known to release potent anti-fibrotic factors including matrix metalloproteinases, which inhibit the proliferation of cardiac fibroblasts, thereby attenuating fibrosis. To achieve the highest possible therapeutic efficacy of stem cells, the other interventions, including hydrogels, electrical stimulations, or platelet-derived biomaterials, have been supplemented, which have resulted in a narrow to broad range of outcomes. Therefore, this article comprehensively analyzed the progress made in stem cells and combinatorial therapies to rescue infarcted myocardium.


2019 ◽  
Vol 20 (9) ◽  
pp. 2269 ◽  
Author(s):  
Carmela Vigorito ◽  
Evgeniya Anishchenko ◽  
Luigi Mele ◽  
Giovanna Capolongo ◽  
Francesco Trepiccione ◽  
...  

(1) The beneficial effects of hydrogen sulfide (H2S) on the cardiovascular and nervous system have recently been re-evaluated. It has been shown that lanthionine, a side product of H2S biosynthesis, previously used as a marker for H2S production, is dramatically increased in circulation in uremia, while H2S release is impaired. Thus, lanthionine could be classified as a novel uremic toxin. Our research was aimed at defining the mechanism(s) for lanthionine toxicity. (2) The effect of lanthionine on H2S release was tested by a novel lead acetate strip test (LAST) in EA.hy926 cell cultures. Effects of glutathione, as a redox agent, were assayed. Levels of sulfane sulfur were evaluated using the SSP4 probe and flow cytometry. Protein content and glutathionylation were analyzed by Western Blotting and immunoprecipitation, respectively. Gene expression and miRNA levels were assessed by qPCR. (3) We demonstrated that, in endothelial cells, lanthionine hampers H2S release; reduces protein content and glutathionylation of transsulfuration enzyme cystathionine-β-synthase; modifies the expression of miR-200c and miR-423; lowers expression of vascular endothelial growth factor VEGF; increases Ca2+ levels. (4) Lanthionine-induced alterations in cell cultures, which involve both sulfur amino acid metabolism and calcium homeostasis, are consistent with uremic dysfunctional characteristics and further support the uremic toxin role of this amino acid.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Pritam Bordhan ◽  
Sajad Razavi Bazaz ◽  
Dayong Jin ◽  
Majid Ebrahimi Warkiani

Cell cycle synchronisation is the process of isolating cell populations at specific phases of the cell cycle from heterogeneous, asynchronous cell cultures. The process has important implications in targeted gene-editing...


2017 ◽  
Vol 65 (4) ◽  
pp. 223-239 ◽  
Author(s):  
Marina C. Zalis ◽  
Sebastian Johansson ◽  
Ulrica Englund-Johansson

Primary retinal cell cultures and immunocytochemistry are important experimental platforms in ophthalmic research. Translation of retinal cells from their native environment to the in vitro milieu leads to cellular stress, jeopardizing their in vivo phenotype features. Moreover, the specificity and stability of many retinal immunochemical markers are poorly evaluated in retinal cell cultures. Hence, we here evaluated the expression profile of 17 retinal markers, that is, recoverin, rhodopsin, arrestin, Chx10, PKC, DCX, CRALBP, GS, vimentin, TPRV4, RBPMS, Brn3a, β-tubulin III, NeuN, MAP2, GFAP, and synaptophysin. At 7 and 18 days of culture, the marker expression profiles of mouse postnatal retinal cells were compared with their age-matched in vivo retinas. We demonstrate stable in vitro expression of all markers, except for arrestin and CRALBP. Differences in cellular expression and location of some markers were observed, both over time in culture and compared with the age-matched retina. We hypothesize that these differences are likely culture condition dependent. Taken together, we suggest a thorough evaluation of the antibodies in specific culture settings, before extrapolating the in vitro results to an in vivo setting. Moreover, the identification of specific cell types may require a combination of different genes expressed or markers with structural information.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Tuan-Phat Huynh ◽  
Shivani N. Mann ◽  
Nawajes A. Mandal

Botanical compounds have been widely used throughout history as cures for various diseases and ailments. Many of these compounds exhibit strong antioxidative, anti-inflammatory, and antiapoptotic properties. These are also common damaging mechanisms apparent in several ocular diseases, including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy, cataract, and retinitis pigmentosa. In recent years, there have been many epidemiological and clinical studies that have demonstrated the beneficial effects of plant-derived compounds, such as curcumin, lutein and zeaxanthin, danshen, ginseng, and many more, on these ocular pathologies. Studies in cell cultures and animal models showed promising results for their uses in eye diseases. While there are many apparent significant correlations, further investigation is needed to uncover the mechanistic pathways of these botanical compounds in order to reach widespread pharmaceutical use and provide noninvasive alternatives for prevention and treatments of the major eye diseases.


Drug Research ◽  
2017 ◽  
Vol 68 (07) ◽  
pp. 370-377 ◽  
Author(s):  
Xuemin Zheng ◽  
Shichao Zhu ◽  
Zhixing Zhou ◽  
Wei Liu ◽  
Weiren Xu

AbstractThe aim of the study is to investigate the protective effects of TY501 against LCA-induced cholestasis in mice and to explore the potential mechanisms. It was demonstrated that TY501(5, 15 or 45 mg/kg, i.g.) can markedly reduced the level of ALT, AST and ALP which increased by LCA treatment. Meanwhile, TY501 also lowered total bile acids, total bilirubin and total cholesterol levels in serum. Furthermore, TY501 can protect HepG2 cell cultures from LCA-induced cytotoxicity. RT-PCR and Western Blot analysis showed that TY501 recovered the expression of BSEP, MRP2 and NTCP which were down-regulated by LCA. Moreover, mRNA and protein of FXR was also observed in TY501 treated mice significantly accumulation in nucleus. Taken together, It can be concluded that TY501 exerted beneficial effects on LCA-induced cholestasis, possibly via activation of FXR mediated upregulation of BSEP, MRP2 and NTCP.


Sign in / Sign up

Export Citation Format

Share Document