scholarly journals Geochemical Evaluation of Formation Water, Mauddud Reservoir, Khabbaz Oilfield, Kirkuk Area, Northern Iraq

2021 ◽  
Vol 5 (2) ◽  
pp. 28-35
Author(s):  
Fouad Qader ◽  
Basim Al-Qayim Al-Beyati ◽  
Fawzi Al-Beyati

In this study, formation-water samples were collected by NOC Staff, during drilling time, from the Mauddud Formation reservoir of the Khabbaz Oilfield, for this reason four samples from four wells; Kz-3, Kz-4, Kz-7, and Kz-23 were selected to geochemical analysis. Analyzed geochemical parameters include TDS and the concentrations of the different dissolved cations and anions present in brines (Ca+2, Mg+2, Na+1, SO4-2, Cl-1, HCO3-1, and NaCl). Variations among the resulted data are discussed by comparison with other Cretaceous Brines. Geochemical ratios of Na/Cl, (Na-Cl)/SO4) and (Cl-Na)/Mg+2 was calculated for formation water classification following Bojarski, (1970). The calculated geochemical ratios of the studied samples in the studied four wells indicate that all of these waters are "chloride calcium" type under subsurface conditions, this type reflect closed system isolated associations reservoir, which are becoming high hydrostatic in deeper zones without influence by infiltration waters. A major transversal fault cutting the structure at its SE plunge had participated in the dilution of the Mauddud reservoir brine effectively.

2019 ◽  
Vol 5 (4) ◽  
pp. 1893-1909 ◽  
Author(s):  
Ikenna Stanley Ifediegwu ◽  
Chinenye Florence Onyeabor ◽  
Chiamaka Miracle Nnamani

Abstract The geochemical evaluation of carbonate aquifers in Ngbo and environs has been executed to ascertain the major ion chemistry and quality of waters for domestic and drinking uses. Ten water samples were gathered from pit lakes, hand dug wells, boreholes and rivers. The collected samples were analysed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3−, Cl−, SO42−, NO3− and PO42− in the laboratory using the standard methods. The results were compared with NDWQS and WHO standards. The physical parameters varied from pH (6.2–8.4), temp. (25.0–26.0 °C), electrical conductivity (4.9–102 µS/cm) and total dissolved solids (25.5–214.2 mg/l). The analysed results revealed the mean concentration of cations and anions in the following order: Ca2+ > Mg2+ > Na+ > K+ > Fe2+ and HCO3− > CO32− > SO42− > Cl−, respectively. Based on the standard limits, about 90% of the waters in the study area is suitable for domestic and drinking purposes. The Piper trilinear, Stiff and Durov diagrams showed that water samples from various locations fall into mixed CaCO32−+HCO3 type. Various ionic ratio plots show that water sources are from dissolution of minerals in the aquifer media. Geochemical parameters such as Cl−, Na+ and K+ show good interrelationship with positive factor loadings among the ions.


2019 ◽  
Author(s):  
Jenna Ross ◽  
◽  
Elize Chaves ◽  
Seth Price ◽  
Jonathan P. Schmitkons

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3082
Author(s):  
Anna Król ◽  
Monika Gajec ◽  
Ewa Kukulska-Zając

In the oil and gas industry, tracers are used to estimate residual oil saturation, to indicate the location and orientation of fractures in tight reservoirs, to identify and mark the direction of fluid flow in fractured deposits, to locate faults and discontinuities, and to measure fluid movement in injection wells during drilling. The tracers should behave in a mechanically similar manner to the tested substance, e.g., formation waters, oil or gas, and, on the other hand, they should significantly differ from them in terms of chemical properties so that it is possible to identify them. One of the fluorescent tracers used in the oil and gas industry, e.g., for inter-well tests during secondary or tertiary production methods (especially during reservoir hydration), is uranine. In order to assess the effectiveness of fluid movement measurements, it is necessary to determine the uranine content in formation waters. In this study, a method was developed to determine uranine in formation water samples using high-performance liquid chromatography with fluorescence detection (HPLC/FLD). The initial step in preparing samples for chromatographic analysis would be solid phase extraction (SPE). The method was validated and allows for the determination of uranine in formation water samples in the concentration range from 0.030 to 2.80 µg/L. The validation of the method included the analysis of factors influencing the measurement result (sources of uncertainty), determination of the linearity range of the standard curve, determination of the quantification limit of the method, and verification of the reproducibility, selectivity, stability and correctness achieved. The method developed within the study can be successfully applied in the case of the determination of uranine content in formation water samples from the oil and gas mining industry, which are often unstable and characterized by a relatively complex matrix. After validation, the method will also be applicable to the determination of uranine in matrices with a similar physicochemical composition, e.g., to assess groundwater flow in deformed carbonate aquifers or to characterize faults that act as barriers to horizontal groundwater flow.


2015 ◽  
Vol 20 (2) ◽  
pp. 31-36 ◽  
Author(s):  
Sandhana Pradhanang Kayastha

Water samples of Karra river from Hetauda industrial area were collected during pre monsoon (May 2012) to assess water chemistry (Ca2+, Na+, K+, HCO3-, NO3-, SO42-, Cl-, F- and H4SiO4) and evaluate influence of natural processes and anthropogenic activities viz. industrial and agricultural inputs. The pollution was more severe near the industrial stretches due to direct discharge of the treated and untreated effluents from industries. Carbonate contribution was noted ~36.2 % from carbonate weathering and ~ 63.8 % from silicate weathering.Journal of Institute of Science and Technology, 2015, 20(2): 31-36


2021 ◽  
Vol 877 (1) ◽  
pp. 012013
Author(s):  
Inass Abdal Razaq Almallah ◽  
Fahad Al Najm ◽  
Zainb Ali Husain

Abstract Water injection by water flooding was used to enhance and increase oil production in Zubair oil field, southern Iraq. Physical-chemical and biological analysis of five water samples from different sources were collected to evaluate its compatibility with formation water using biological experiments and chemical compatibility simulation. The results show that injection water is classified weakly acidic-weakly alkaline and saline water, whereas surface water samples are considered weakly acid-weakly alkaline. The total dissolved solids results show brackish types accept for Formation water which classified weakly acid and Brine water. All the studied water samples contain bacteria colonies of Escherichia coli and Coliform expect for one sample, while Sulfate Reducing Bacteria was founded in all studied samples. Mathematical model of chemical compatibility between studied water samples and Zubair Formation water of the scale prediction model show that there are no needs for any inhibition treatments of all scales except for Geothite and Dolomite that should be treated before water injection. The biological compatibility experiments results show Formation damage about (61%) and (69%) in the studied core samples, while Bactria in water injection caused formation damage about (20%) and (51%).


1978 ◽  
Vol 90 ◽  
pp. 150-154
Author(s):  
J Perregaard

For some time organic geochemical evaluation of an appreciable number of surface samples from the Cretaceous-Tertiary sediments of West Greenland was performed by companies and research institutes outside Denmark (Schiener, 1976). In order to provide immediate controlof the data produced, as well as to acquire the necessary expertise within Denmark, laboratory facilities for organic geochemical analysis were set up in GGU in the spring 1977 with financial support from the Danish Natural Science Research Council (SNF). Establishing these facilities is part of an energy research project initiated by SNF in late 1973 to evaluate fossil fuel potentials of sedimentary basins in Greenland.


2018 ◽  
Vol 64 (4) ◽  
pp. 1-10
Author(s):  
P.R Ikhane ◽  
O.V Oladipo ◽  
O.A Adeagbo ◽  
O.O Oyebolu

Abstract Organic geochemical analysis of two selected wells penetrating shale facies of the Anambra basin was conducted with the view of evaluating the section in terms of quantity and quality of organic matter, genetic potential, organic matter type, thermal maturity as well as determining the type of hydrocarbon that could be generated. Geochemical parameters such as Total Organic Carbon (TOC), S1 (representing free and adsorbed hydrocarbons present), S2 (representing hydrocarbons generated directly from the kerogen), S3 (carbon dioxide CO2 present) and maximum temperature (Tmax) as well as Hydrogen Index (HI), Oxygen Index (OI), Production Index (PI) and Genetic Potential (GP) were derived and calculated from the pyrolysis data. Result indicated that Well 1 samples have an average TOC of 1.21 wt % which is considered good in organic matter quantity and fair in quality, while Well 2 samples are organically lean, poor in quantity and quality with average TOC value of 0.15 wt %. The Genetic Potential (GP) expressed as (S1+S2) for Well 1 and Well 2 averages 2.03 and 0.68 mg HC/g respectively, indicating, a poor generational potential. The HI, OI and S2/S3 values of Well 1 samples are 146.56 mg HC/g, 226.78 mg HC/g and 0.86 respectively which on plots suggest the kerogen as type IV although few samples fall within the type III area. This contrasts with Well 2 samples having HI, OI and S2/S3 values as 343.67 mg HC/g, 276.78 mg HC/g and 1.26 respectively. Thus making the kerogen type to be interpreted as type III. Judging from Tmax (average of 441.67°C for Well 1 and 470.44°C for Well 2) and PI (average of 0.13 for Well 1 and 0.24 for Well 2) values, Well 1 samples are within the oil generating window whereas Well 2 samples are overmatured generating dry gas. Deductions from the result of geochemical analysis show that the kerogen of Well 1 samples will generate oil while that of Well 2 samples have propensity to generate dry gas.


Sign in / Sign up

Export Citation Format

Share Document