scholarly journals Chemical and biological compatibility of different injection waters with Zubair Formation Water of Upper Sand Member in Zubair Oil Field, South of Iraq

2021 ◽  
Vol 877 (1) ◽  
pp. 012013
Author(s):  
Inass Abdal Razaq Almallah ◽  
Fahad Al Najm ◽  
Zainb Ali Husain

Abstract Water injection by water flooding was used to enhance and increase oil production in Zubair oil field, southern Iraq. Physical-chemical and biological analysis of five water samples from different sources were collected to evaluate its compatibility with formation water using biological experiments and chemical compatibility simulation. The results show that injection water is classified weakly acidic-weakly alkaline and saline water, whereas surface water samples are considered weakly acid-weakly alkaline. The total dissolved solids results show brackish types accept for Formation water which classified weakly acid and Brine water. All the studied water samples contain bacteria colonies of Escherichia coli and Coliform expect for one sample, while Sulfate Reducing Bacteria was founded in all studied samples. Mathematical model of chemical compatibility between studied water samples and Zubair Formation water of the scale prediction model show that there are no needs for any inhibition treatments of all scales except for Geothite and Dolomite that should be treated before water injection. The biological compatibility experiments results show Formation damage about (61%) and (69%) in the studied core samples, while Bactria in water injection caused formation damage about (20%) and (51%).

2021 ◽  
Vol 73 (09) ◽  
pp. 58-59
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30407, “Case Study of Nanopolysilicon Materials’ Depressurization and Injection-Increasing Technology in Offshore Bohai Bay Oil Field KL21-1,” by Qing Feng, Nan Xiao Li, and Jun Zi Huang, China Oilfield Services, et al., prepared for the 2020 Offshore Technology Conference Asia, originally scheduled to be held in Kuala Lumpur, 2–6 November. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. Nanotechnology offers creative approaches to solve problems of oil and gas production that also provide potential for pressure-decreasing application in oil fields. However, at the time of writing, successful pressure-decreasing nanotechnology has rarely been reported. The complete paper reports nanopolysilicon as a new depressurization and injection-increasing agent. The stability of nanopolysilicon was studied in the presence of various ions, including sodium (Na+), calcium (Ca2+), and magnesium (Mg2+). The study found that the addition of nanomaterials can improve porosity and permeability of porous media. Introduction More than 600 water-injection wells exist in Bohai Bay, China. Offshore Field KL21-1, developed by water-flooding, is confronted with the following challenges: - Rapid increase and reduction of water-injection pressure - Weak water-injection capacity of reservoir - Decline of oil production - Poor reservoir properties - Serious hydration and expansion effects of clay minerals To overcome injection difficulties in offshore fields, conventional acidizing measures usually are taken. But, after multiple cycles of acidification, the amount of soluble substances in the rock gradually decreases and injection performance is shortened. Through injection-performance experiments, it can be determined that the biological nanopolysilicon colloid has positive effects on pressure reduction and injection increase. Fluid-seepage-resistance decreases, the injection rate increases by 40%, and injection pressure decreases by 10%. Features of Biological Nanopolysilicon Systems The biological nanopolysilicon-injection system was composed of a bioemulsifier (CDL32), a biological dispersant (DS2), and a nanopolysilicon hydrophobic system (NP12). The bacterial strain of CDL32 was used to obtain the culture colloid of biological emulsifier at 37°C for 5 days. DS2 was made from biological emulsifier CDL32 and some industrial raw materials described in Table 1 of the complete paper. Nanopolysilicon hydrophobic system NP12 was composed of silicon dioxide particles. The hydrophobic nanopolysilicons selected in this project featured particle sizes of less than 100 nm. In the original samples, a floc of nanopolysilicon was fluffy and uniform. But, when wet, nanopolysilicon will self-aggregate and its particle size increases greatly. At the same time, nanopolysilicon features significant agglomeration in water. Because of its high interface energy, nanopolysilicon is easily agglomerated, as shown in Fig. 1.


2012 ◽  
Author(s):  
Amer Badr Merdhah ◽  
Abu Azam Mohd Yassin

Kerak pemendapan merupakan satu daripada masalah paling penting dan serius dalam sistem suntikan air. Kerak kadangkala mengehadkan atau menghalang penghasilan gas dan minyak melalui penyumbatan matrik atau perpecahan pembentukan minyak dan jeda yang berlubang. Makalah ini mengetengahkan kesimpulan pengukuran makmal bagi kerak terbentuk di dalam keterlarutan medan minyak biasa dalam sintetik air masin (pembentukan air dan air laut) bagi pembentukan air yang mengandungi barium dan kandungan garam yang tinggi pada suhu 40 hingga 90°C pada tekanan atmosfera. Keputusan uji kaji mengesahkan pola kebergantungan keterlarutan bagi kerak medan minyak biasa pada keadaan ini. Pada suhu yang lebih tinggi, kerak bagi CaCO3, CaSO4, dan SrSO4 meningkat manakala kerak BaSO4 menurun disebabkan oleh keterlarutan CaCO3, CaSO4, dan SrSO4 menurun dan keterlarutan BaSO4 meningkat dengan kenaikan suhu. Kata kunci: Masalah pengskalaan; skala keterlarutan; paras kandungan garam tinggi; logam barium tinggi Scale deposition is one of the most important and serious problems which water injection systems are generally engaged in. Scale sometimes limits or blocks oil and gas production by plugging the oil–producing formation matrix or fractures and the perforated intervals. This paper presents a summary of the laboratory measurements of the solubility of common oil field scales in synthetic brines (formation water and sea water) of high–barium and high–salinity formation waters at 40 to 90°C and atmospheric pressure. The experimental results confirm the general trend in solubility dependencies for common oil field scales at these conditions. At higher temperatures the deposition of CaCO3, CaSO4 and SrSO4 scale increases and the deposition of BaSO4 scale decreases since the solubilities of CaCO3, CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. Key words: Scaling problems; solubility of scale; high salinity; high barium


2018 ◽  
Vol 785 ◽  
pp. 159-170
Author(s):  
Vadim Aleksandrov ◽  
Kirill Galinskij ◽  
Andrey Ponomarev ◽  
Vadim Golozubenko ◽  
Yuriy Sivkov

One of the most important aspects in the activities of oil companies in the Western Siberia is to improve the effectiveness of water-flooding as the main method of impact on the formation. This is due to the fact that at the present time reservoirs of a complex structure with difficult to recover reserves prevail among newly introduced development objects, the extraction of which is extremely difficult using a simple method of water injection volumes regulation. First of all, this refers to reservoirs of Jurassic deposits, which are characterized by the most complex geological structure and porosity and permeability properties. A promising direction in improving the water-flooding system at such objects is the use of physical and chemical technologies to enhance the oil recovery of formations, and primarily, referring to the diverter technology. The research objective is to evaluate the effectiveness of using “hard” type diverter compositions to enhance oil recovery of formations. With the help of detailed oil-field analysis and field-geophysical studies, the nature of the development of oil reserves for Jurassic development sites has been assessed.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5288
Author(s):  
Xianguo Zhang ◽  
Chengyan Lin ◽  
Yuqi Wu ◽  
Tao Zhang ◽  
Hongwei Wang ◽  
...  

During water and polymer flooding for enhanced oil recovery, pore structures may vary because of the fluid–rock interactions, which can lead to variations in petrophysical properties and affect oil field production. To investigate the effects of fluid flooding on pore structures, six samples were subjected to brine water, dual-system, and alkaline–surfactant–polymer (ASP) polymer displacement experiments. Before and after experiments, samples were scanned by X-ray CT. Thin sections, X-ray diffraction, and high pressure mercury injection tests were also carried out to characterize mineralogy and fractal dimension of pore systems before experiments. Experiment results show that water flooding with low injection pore volume ratio (IPVR) can improve reservoir quality since total porosity and connected porosity of samples rise after the flooding and the proportion of large pores also increases and heterogeneity of pore structure decreases. However, water flooding with high IPVR has reverse effects on pore structures. Polymer flooding reduces the total porosity, connected porosity, the percentage of small pores and enhances the heterogeneity of pore structures. It can be found that pore structures will change in fluid flooding and appropriate water injection can improve reservoir quality while excessive water injection may destroy the reservoir. Meanwhile, injected polymer may block throats and destroy reservoirs. The experimental results can be used as the basis for oil field development.


2018 ◽  
Vol 24 (8) ◽  
pp. 40
Author(s):  
Hussain Ali Baker ◽  
Kareem A. Alwan ◽  
Saher Faris Fadhil

Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure. In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water. The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity water flooding. The result of this experimental work shows that the water without any free ions (deionized water) and modified low salinity water have improved better oil recovery than the formation water and seawater as a secondary oil process. The increase in oil recovery factor related to the wettability alteration during low salinity water flooding which causes a decrease in the interfacial tension between the crude oil in porous media and the surface of reservoir rocks. As well as the dissolution of minerals such as calcite Ca+2 was observed in this work, which causes an increase in the pH value. All these factors led to change the wettability of rock to be more water-wet, so the oil recovery can be increased.  


2021 ◽  
Author(s):  
Babalola Daramola

Abstract This paper presents case studies of how produced water salinity data was used to transform the performance of two oil producing fields in Nigeria. Produced water salinity data was used to improve Field B’s reservoir simulation history match, generate infill drilling targets, and reinstate Field C’s oil production. A reservoir simulation study was unable to history match the water cut in 3 production wells in Field B. Water salinity data enabled the asset team to estimate the arrival time of injected sea water at each production well in oil field B. This improved the reservoir simulation history match, increased model confidence, and validated the simulation model for the placement of infill drilling targets. The asset team also gained additional insight on the existing water flood performance, transformed the water flooding strategy, and added 9.6 MMSTB oil reserves. The asset team at Field C was unable to recover oil production from a well after it died suddenly. The team evaluated water salinity data, which suggested scale build up in the well, and completed a bottom-hole camera survey to prove the diagnosis. This justified a scale clean-out workover, and added 5000 barrels per day of oil production. A case study of how injection tracer data was used to characterise a water injection short circuit in Field D is also presented. Methods of using produced water salinity and injection tracer data to manage base production and add significant value to petroleum fields are presented. Produced water salinity and injection tracer data also simplify water injection connectivity evaluations, and can be used to justify test pipeline and test separator installation for data acquisition.


2013 ◽  
Vol 274 ◽  
pp. 153-156
Author(s):  
Rong Hua Li ◽  
Jun Ting Zhang ◽  
Cheng Lin Zhang ◽  
Huan Huan Zhang ◽  
Peng Qu

Layer system subdivision and adjustment is applied in oilfield development to ease the contradiction in inner-layer and interlayer and implement separated layer water flooding well, which is a major adjustment measure to improve developing effects. YSL is a typical low-permeability oil field, whose petrophysics is poor, and which exist many problems, such as apparent contradictions between layers, and poor development effects through separated zone water injection and so on. In this article, the thickness of barriers, injection profile, permeability contrast and remaining oil distribution are analyzed comprehensively. So a reasonable method is also proposed. Much weakness that factors are not comprehensive in adjustment method and that the problems in the development process are not accurately reflected is overcome, which exists in the past methods. The adjustment means can utilize poor thin layers better, reduce invalid water injection and ease the contradictions between layer, and oilfield development effects are improved eventually. It is a reference and guidance for other blocks or oilfield which exist the same problems.


2013 ◽  
Vol 421 ◽  
pp. 286-289
Author(s):  
Hui Hui Kou ◽  
Xian Gui Liu ◽  
Han Min Xiao ◽  
Ling Hui Sun ◽  
Dong Dong Hou ◽  
...  

According to the features of low porosity and low permeability fracture as well as small scale of channel development, frequent sedimentary facies changes of planar sandstone, poor connectivity, large variation of sequence thickness and great development difficulties for oil layer in Fuyang Oilfield. In this paper, on the basis of fully considered of fracture features, built a more accurate 3-D geological model. And on the basis of the history matching, determined the formation pressure maintenance level under different injection-production ratio and rational water-flooding timing by the simulation of the different programs in the process advanced water injection development. The results show that: the reasonable injection-production ratio of Fuyang oil layer is 1.4, and the rational water-flooding timing is three months after advanced water injection. This provides theoretical guidance for the large-scale development of Fuyang oil layer, and also provides the technical basis for the developing of the other low permeability fractured oil field by advanced water injection.


Author(s):  
Yazhou Zhou ◽  
Wenbin Yang ◽  
Daiyin Yin

AbstractWater injection is an effective method for developing low permeability sandstone reservoirs. In the process of water flooding, reservoir damage can occur due to clay mineral content changes and it will significantly affect oil production. There are few investigations on the changes in clay mineral content and the degree of reservoir damage after injecting the water into low permeability sandstone reservoirs with different permeabilities and lithologies. In this study, low permeability natural cores from different lithological strata were collected from 4 wells in the Daqing sandstone reservoir, and clay mineral components and contents were measured through X-ray diffraction. Changes in the clay mineral content were determined after water injection. The reservoir damage mechanism by clay mineral migration was determined by analyzing scanning electron microscopy (SEM) images after water injection. Meanwhile, the porosity and permeability of the cores were tested after water injection, and the degree of reservoir damage in different lithological strata was determined. The clay mineral content ranges from 6.78 to 14.14% in low permeability sandstone cores and declines by 49.73% after water flooding. Illite, chlorite and illite/smectite mostly decrease, and kaolinite decreases the least. Due to the large particle size of kaolinite, kaolinite migration will block the pore-throats and cause formation damage after water flooding. In argillaceous siltstone and siltstone, kaolinite particles blocking pore-throats are very serious, and the permeability decreases greatly by 21.87–36.89% after water injection. With increasing permeability, the permeability decreases greatly after water injection. The findings of this study can help to better understand the mechanisms of formation damage after injecting water into low permeability sandstone reservoirs.


2021 ◽  
Vol 18 (3) ◽  
pp. 369-378
Author(s):  
Jianmeng Sun ◽  
Xindi Lv ◽  
Jie Zong ◽  
Shuiping Ma ◽  
Yong Wu ◽  
...  

Abstract The biolithite reservoir has a strong heterogeneity and complex pore structure, and the changing trend of formation resistivity is complicated during the waterflood development process. In the logging interpretation of a water-flooded layer, mixed-formation water resistivity is a critical parameter and its accurate calculation heavily influences the evaluation of logging water saturation. The commonly used mixed liquid resistivity models have not taken into account the contribution of irreducible clay water and, thus, they are not suitable for biolithite reservoirs with high shale contents. In this paper, a new 3D digital core was constructed based on CT scanning, and a progressive ion exchange model of the mixed-formation water compatible with the biolithite reservoir put forward. Compared with experimental data from core water flooding, the progressive ion exchange model conforms to the resistivity change law of biolithite reservoirs. Through numerical simulation and analysis of the resistivity of biolithite reservoir, it is concluded that the salinity of injected water and the formation water saturation are the main factors affecting the resistivity characteristics of water-flooded layer. In terms of the interpretation of the water-flooded layer, the water saturation was calculated using the progressive ion exchange model through finite element modelling of formation resistivity. The particular mechanism of water flooding and changing law of rock electrical properties during reservoir water injection development are presented, which provide a new reliable basis for optimization of the biolithite reservoir development plan.


Sign in / Sign up

Export Citation Format

Share Document