scholarly journals The Effect of Environmental Temperature on the Relationship between Ruminal Volatile Fatty Acids and Heat Production of Dry Cows

1979 ◽  
Vol 50 (5) ◽  
pp. 265-270 ◽  
Author(s):  
Masaki SHIBATA ◽  
Akio MUKAI
2021 ◽  
Vol 15 (3) ◽  
pp. 037101
Author(s):  
Tasneem Shetewi ◽  
Melissa Finnegan ◽  
Shane Fitzgerald ◽  
Shuai Xu ◽  
Emer Duffy ◽  
...  

1972 ◽  
Vol 27 (3) ◽  
pp. 553-560 ◽  
Author(s):  
J. L. Clapperton ◽  
J. W. Czerkawski

1. Propane-1:2-diol (loog/d) was infused through a cannula into the rumen of sheep receiving a ration of hay and dried grass. The concentration of volatile fatty acids, propanediol, lactic acid and of added polyethylene glycol, and the pH of the rumen contents were measured. The energy metabolism of the sheep was also determined.2. Most of the propanediol disappeared from the rumen within 4 h of its infusion. The infusion of propanediol resulted in a 10% decrease in the concentration of total volatile acids; the concentration of acetic acid decreased by about 30%, that of propionic acid increased by up to 60% and there was no change in the concentration of butyric acid.3. The methane production of the sheep decreased by about 9% after the infusion of propanediol and there were increases in the oxgyen consumption, carbon dioxide production and heat production of the animals; each of these increases was equivalent to about 40% of the theoretical value for the complete metabolism of 100 g propanediol.4. It is concluded that, when propanediol is introduced into the rumen, a proportion is metabolized in the rumen and a large proportion is absorbed directly. Our thanks are due to Dr J. H. Moore for helpful discussions, to Mr D. R. Paterson, Mr J. R. McDill and Mr C. E. Park for looking after the animals and to Miss K. M. Graham, Miss A. T. McKay and Mrs C. E. Ramage for performing the analyses.


1979 ◽  
Vol 41 (3) ◽  
pp. 541-551 ◽  
Author(s):  
E. R. ØRskov ◽  
D. A. Grubb ◽  
J. S. Smith ◽  
A. J. F. Webster ◽  
W. Corrigall

1. Two experiments were conducted with lambs sustained entirely by intragastric infusion of volatile fatty acids (VFA), protein, minerals and vitamins.2. In the first experiment to determine the effects of VFA on nitrogen retention four mixtures of VFA (B, C, D and E) were used containing acetic, propionic and butyric acid in the following molar proportions respectively: 45,45 and 10; 55,35 and 10; 65,25 and 10; 75, 15 and 10.The level of infusion was 836 kJ/live weight0.75 per d and the design was a 4 × 4 Latin square with 14 d periods. There were no significant differences in the N balance between the different mixtures of VFA though mixture B tended to give the highest N retention.3. Thirty-two lambs were used in the second experiment for measurements of heat production in closed- circuit respiration chambers. Six mixtures of VFA were used. These included mixtures B-E from Expt I and in addition two mixtures (A and F) containing acetic, propionic and butyric acid in the following molar proportions respectively: 35, 55 and 10; 85, 5 and 10. The heat production was measured both at 450 and 900 kJ/W0.75 per d, except for mixture F, where it was not possible to achieve a rate of infusion in excess of 675 kJ/W0.75 per d.4. The energy required for maintenance was determined to be 0.45±0.02 MJ/kg live weight0.75 per d regardless of the mixture used.5. The efficiency of utilization for fattening (kf) values for the six mixtures were 0.78, 0.64, 057, 0.61, 0.61 and 0.59 for mixtures A, B, C, D, E and F respectively. Only mixture A was significantly better utilized than the other mixtures. This mixture also gave the most efficient N utilization.6. It is concluded from this evidence that differences in k, for diets normally given to ruminants cannot be attributed to differences in utilization of volatile fatty acids.


1969 ◽  
Vol 72 (3) ◽  
pp. 479-489 ◽  
Author(s):  
D. W. F. Shannon ◽  
W. O. Brown

SUMMARYExperiments to determine the net availabilities of the metabolizable energy (NAME) of a cereal-based diet and a maize-oil diet for maintenance and lipogenesis and the effect of environmental temperature on the NAME of the cereal-based diet are described. Four 1- to 2-year-old Light Sussex cockerels were used.The relationship between ME intake and energy retention was linear for each diet. The NAME'S of the cereal-based diet given at 22° and 28 °C (70.6 ± 1.83 % and 73.6 ± 3.54%, respectively) were significantly (P < 0.05) lower than the NAME of the maize-oil diet (84.1 ± 1.85%). It is concluded that the beneficial effect of maize oil on the efficiency of energy utilization is due to a reduced heat increment rather than a reduction in the basal component of the heat production. The higher efficiency from the maize-oil diet led to an increase in the energy retained as fat.The mean fasting heat production at 28 °C was 15 % lower than at 22 °C (43.2 ± 1.45 and 51.2 ± 1.09 kcal/kg/day, respectively). The NAME of the cereal-based diet was not significantly different when the birds were kept at 22° or 28 °C. The lower metabolic rate at 28 °C was reflected in a lower maintenance requirement and in an increase in the deposition of body fat.


Author(s):  
Paulina Markowiak-Kopeć ◽  
Katarzyna Śliżewska

The relationship between diet and the diversity and function of the intestinal microbiomeand its importance for human health is currently the subject of many studies. The type and proportionof microorganisms found in the intestines can determine the energy balance of the host. Intestinalmicroorganisms perform many important functions, one of which is participation in metabolicprocesses, e.g., in the production of short-chain fatty acids&mdash;SCFAs (also called volatile fatty acids).These acids represent the main carbon flow from the diet to the host microbiome. Maintainingintestinal balance is necessary to maintain the host&rsquo;s normal health and prevent many diseases.The results of many studies confirm the beneficial effect of probiotic microorganisms on the balanceof the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is tosummarize what is known on the effects of probiotics on the production of short-chain fatty acidsby gut microbes. In addition, the mechanism of formation and properties of these metabolites isdiscussed and verified test results confirming the effectiveness of probiotics in human nutrition bymodulating SCFAs production by intestinal microbiome is presented.


2021 ◽  
Author(s):  
Young-Kyoung Park ◽  
Cristina González-Fernández ◽  
Raúl Robles-Iglesias ◽  
Lea Vidal ◽  
Pierre Fontanille ◽  
...  

Abstract In recent years, there has been a growing interest in the use of renewable sources for bio-based production aiming at developing sustainable and feasible approaches towards a circular economy. Among these renewable sources, organic wastes (OWs) can be anaerobically digested to generate carboxylates like volatile fatty acids (VFAs), lactic acid, and longer-chain fatty acids that are regarded as novel building blocks for the synthesis of value-added compounds by yeasts. This review discusses on the processes that can be used to create valuable molecules from OW-derived VFAs; the pathways employed by the oleaginous yeast Yarrowia lipolytica to directly metabolize such molecules; and the relationship between OW composition, anaerobic digestion, and VFA profiles. The review also summarizes the current knowledge about VFA toxicity, the pathways by which VFAs are metabolized, and the metabolic engineering strategies that can be employed in Y. lipolytica to produce value-added biobased compounds from VFAs.


2019 ◽  
Vol 59 (8) ◽  
pp. 1470 ◽  
Author(s):  
M. Lachica ◽  
L. González-Valero ◽  
J. M. Rodríguez-López ◽  
L. Lara ◽  
I. Fernández-Fígares

The aim of the present study was to determine the portal-drained viscera (PDV) heat production (HP) and net PDV flux of volatile fatty acids (VFA: acetic, propionic and butyric acids) in Iberian pigs (34-kg bodyweight) fed with acorn from evergreen oak, and to ascertain whether there is an effect of acorn feeding over time. In addition, potential contribution of both parameters to the energy budget of the animal was calculated. The following two sampling periods were conducted with six gilts: after 1 day (I) and after 1 week (II) of acorn feeding. Postprandial PDV HP was 29% greater (P &lt; 0.01) in Sampling period II than in Sampling period I, but net PDV flux of VFA was only slightly greater (5%, P &gt; 0.1). Potential proportional contribution of VFA to the whole HP was almost identical in both sampling periods (0.057, on average), representing 0.109 (on average) of the metabolisable energy requirements for maintenance. Pigs adapted for 1 week to an acorn diet had increased PDV HP without an increase in the net PDV flux of VFA, indicating that, apparently, nutrients other than VFA were responsible for the increased PDV HP.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1107 ◽  
Author(s):  
Paulina Markowiak-Kopeć ◽  
Katarzyna Śliżewska

The relationship between diet and the diversity and function of the intestinal microbiome and its importance for human health is currently the subject of many studies. The type and proportion of microorganisms found in the intestines can determine the energy balance of the host. Intestinal microorganisms perform many important functions, one of which is participation in metabolic processes, e.g., in the production of short-chain fatty acids—SCFAs (also called volatile fatty acids). These acids represent the main carbon flow from the diet to the host microbiome. Maintaining intestinal balance is necessary to maintain the host’s normal health and prevent many diseases. The results of many studies confirm the beneficial effect of probiotic microorganisms on the balance of the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is to summarize what is known on the effects of probiotics on the production of short-chain fatty acids by gut microbes. In addition, the mechanism of formation and properties of these metabolites is discussed and verified test results confirming the effectiveness of probiotics in human nutrition by modulating SCFAs production by intestinal microbiome is presented.


2001 ◽  
Vol 2001 ◽  
pp. 194-194
Author(s):  
T. Yan ◽  
R. E. Agnew

It is well recognised that the fat and protein concentration in the milk of dairy cows is influenced by volatile fatty acids (VFAs) produced in the rumen. There has however been little information available on models to predict milk composition from rumen VFAs in the literature. The objective of the present study was to develop empirical relationships to predict milk fat and protein concentration using rumen VFA data.


Sign in / Sign up

Export Citation Format

Share Document