scholarly journals Effects of nitrogen, phosphorus, EDTA and sodium chloride on biomass and lipid accumulation of Chaetomorpha aerea

2020 ◽  
pp. 152-158
Author(s):  
Gour Gopal Satpati ◽  
Ruma Pal

The increase of total lipid and fatty acids production was studied under different nutrient stress conditions using the macroalga, Chaetomorpha aerea. The effects of nitrogen, phosphorus, ethylene diamine tetra-acetate and sodium chloride on the growth and lipid accumulation were systematically investigated in laboratory conditions. The biomass was harvested at different stages of cultivation and assessed. The maximum changes of growth and lipid accumulation were observed in the exponential phase at different cultural conditions. The two-fold increase of total lipid was found in the order of 28.27±0.04 % (at 0.1 g/L nitrogen) > 27.30±0.37 % (at 0.5 g/L of phosphorus) > 25.86±0.77 % (at 0.05 g/L of EDTA)> 24.37±0.04 % (at 0.05 g/L NaCl) on 8th day of cultivation. The fatty acids were identified and quantified by gas chromatography mass spectrometry (GC-MS). The alga produces significantly high amount of monounsaturated fatty acid (MUFA) and saturated fatty acids (SFA) than the polyunsaturated fatty acids (PUFA) in different cultural conditions. The elevated levels of C16:1, C18:1 and C20:1 was identified under nitrate, phosphate and salt stress conditions, which are more suitable for biodiesel production.

2021 ◽  
Vol 13 (2) ◽  
pp. 592
Author(s):  
Hussein El-Sayed Touliabah ◽  
Adel W. Almutairi

Economic viability of biodiesel production relies mainly on the productivity of biomass and microalgal lipids. In addition, production of omega fatty acids is favorable for human nutrition. Thus, enhancement of lipid accumulation with high proportion of omega fatty acids could help the dual use of microalgal lipids in human nutrition and biodiesel production through biorefinery. In that context, phytohormones have been identified as a promising factor to increase biomass and lipids production. However, nitrogen limitation has been discussed as a potential tool for lipid accumulation in microalgae, which results in simultaneous growth retardation. The present study aims to investigate the combined effect of N-depletion and 3-Indoleacetic acid (IAA) supplementation on lipid accumulation of the marine eustigmatophyte Nannochloropsis oceanica as one of the promising microalgae for omega fatty acids production. The study confirmed that N-starvation stimulates the lipid content of N. oceanica. IAA enhanced both growth and lipid accumulation due to enhancement of pigments biosynthesis. Therefore, combination effect of IAA and nitrogen depletion showed gradual increase in the dry weight compared to the control. Lipid analysis showed lower quantity of saturated fatty acids (SFA, 26.25%) than the sum of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). Under N-depletion, SFA decreased by 12.98% compared to the control, which recorded much reduction by increasing of IAA concentration. Reduction of SFA was in favor of PUFA, mainly omega-6 and omega-3 fatty acids which increased significantly due to IAA combined with N-depletion. Thus, the present study suggests a biorefinery approach for lipids extracted from N. oceanica for dual application in nutrition followed by biodiesel production.


2014 ◽  
Vol 32 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Omar Montenegro R. ◽  
Stanislav Magnitskiy ◽  
Martha C. Henao T.

This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia). The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w) with a high content of the unsaturated fatty acids oleic (> 47%) and linoleic acid (> 29%). The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4%) and stearic (7.26%) were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 221
Author(s):  
S. N. Ibrahim ◽  
K. A. Radzun ◽  
K. Ismail

Chlorella vulgaris is one of the promising microalgae strains that can produce high yield of bio-oils. The C. vulgaris was pretreated with microwave irradiation prior to extraction using supercritical carbon dioxide (SCCO2). Fourier transform infrared spectroscopy (FTIR) analysis showed microwave irradiation pretreatment does not affect the material composition of C. vulgaris. Scanning electron microscopy (SEM) of the microwave irradiation pretreated microalgae showed an agglomeration of the cells with the cells shape became distorted due to rupturing of the cell walls. Optimization of the SCCO2 process parameters (pressure, temperature and CO2 flow rate) was performed by using response surface methodology (RSM) with central composite design (CCD). Two factors significantly affecting the extraction yield were temperature and pressure. The model equation also predicted the optimum condition for the SCCO2 (without microwave pretreatment) at 70 , 5676 psi and 7 sL/ min while optimum condition for SCCO2 (microwave irradiation pretreatment) at 63 , 5948 psi and 10 sL/ min. High amount of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), -linolenic acid and palmitoleic acid were found in the extracted oil with microwave irradiation pre-treatment sample.  In addition, the polyunsaturated fatty acids (PUFA) content in the microwave irradiation pretreated oil was considerably low and is desirable for biodiesel production. 


e-xacta ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 11
Author(s):  
Najla Postaue ◽  
Leila Cristina Moraes ◽  
Rosa Maria Farias Asmus

A biomassa de microalgas tem apresentado potencial para produção de biodiesel, contudo a viabilidade do cultivo de microalgas depende de fonte de nutrientes de baixo custo. O presente estudo objetivou utilizar o chorume como fonte de nutrientes para microalgas. Os experimentos foram conduzidos visando avaliar a obtenção da biomassa microalgal, conversão de lipídios e rendimento em ésteres metílicos de ácidos graxos, para os meios de cultivos utilizando 5%, 12% e 20% de chorume, com concentrações de 0,02, 0,05 e 0,08 g N. L-1 e para meio de controle contendo 1% de, Nitrogênio (N), Fósforo (P) e Potássio (K), na concentração de 20 g L-1, 5 g L-1 e 20 g L-1, respectivamente. A microalga utilizada neste trabalho foi a de classe Chlorophyceae e família Coccomyxaceae. Os resultados demonstraram que o meio com concentração de 12% de chorume obteve melhores resultados, possibilitando alcançar 1,19 g de biomassa, conversão de 108,15 mg g-1 de lipídios e conteúdo de ésteres de 410,77mg g-1, a microalga utilizada apresentou ainda predominância dos ácidos graxos palmítico e oleico, apresentando baixa quantidade de ácidos graxos saturados o que pode fornecer ao combustível, resistência ao frio. E tais aspectos demonstraram que o chorume pode ser uma fonte promissora de nutrientes para o cultivo das microalgas estudadas. AbstractMicroalgae biomass has presented potential for biodiesel production, however the viability of microalgae cultivation depends on low cost nutrient source. The present study aimed to use leachate as a source of nutrients for microalgae. The experiments were conducted to evaluate the microalgal biomass, lipid conversion and yield in fatty acid methyl esters, for the culture media using 5%, 12% and 20% leachate, with concentrations of 0.02, 0.05 and 0.08 g N. L-1 and for control medium containing 1% Nitrogen (N), Phosphorus (P) and Potassium (K), at a concentration of 20 g L-1, 5 g L-1 and 20 g L-1, respectively. The microalgae used in this work was Chlorophyceae class and Coccomyxaceae family. The results showed that the medium with a concentration of 12% of leachate obtained better results, allowing to reach 1.19 g of biomass, conversion of 108.15 mg g-1 of lipids and esters content of 410,77 mg g-1. The microalgae used also presented predominance of palmitic and oleic fatty acids, presenting low amount of saturated fatty acids which can provide the fuel with cold resistance. And these aspects demonstrated that the leachate can be a promising source of nutrients for the cultivation of the studied microalgae.


2004 ◽  
Vol 58 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Dejan Skala ◽  
Sandra Glisic

Biodiesel is defined as a fuel which may be used as pure biofuel or at high concentration in mineral oil derivatives, in accordance with specific quality standards for transport applications. The main raw material used for biodiesel production is rapeseed, which contains mono-unsaturated acids (about 60%) and also poly-unsaturated fatty acids (C 18:1 and C 18:3) in a lower quantity, as well as some undesired saturated fatty acids (palmitic and stearic acids). Other raw materials have also been used in research and the industrial production of biodiesel (palm oil, sunflower oil, soybean oil, waste plant oil, animal fats, etc). The historical background of biodiesel production, installed industrial capacities, as well as the Directive of the European Parliament and of the Council (May 2003) regarding the promotion of the use of biofuels or other renewable fuels for transport are discussed in the first part of this article. The second part focuses on some new concepts for the future development of technology for biodiesel production, based on the application of non-catalytic transesterification under supercritical conditions or the use of lipases as an alternative catalyst for this reaction.


2018 ◽  
Vol 4 (2) ◽  
pp. 101
Author(s):  
Ricardo Del Águila

The aim of this study was to evaluate the fatty acid profile in soybean cultivars from northeastern Brazil, materials developed primarily to achieve a minimum level of oil and protein. The purpose is to serve as to warn about the need to modify fatty acids profiles to enhance both the oil for human consumption and that used in biodiesel production. Results showed the predominance of linoleic acid (average 50.1%) followed by oleic acid (27.9%), palmitic acid (11.97%), linolenic acid (6.68%) and stearic acid (3.38%) in the composition of fatty acids. Such condition makes soybean oil less competitive for both human consumption (for its high content of saturated fatty acids) and the biodiesel industry (problems with oxidative stability and flow in the cold). Considerations are also made on conventional and modern techniques to overcome these drawbacks.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Gour Gopal Satpati ◽  
Sanjit Kanjilal ◽  
Rachapudi Badari Narayana Prasad ◽  
Ruma Pal

Increase of total lipid and the proportion of the favorable fatty acids in marine green filamentous macroalgaRhizoclonium africanum(Chlorophyceae) was studied under nitrate and phosphate limitations. These stresses were given by both eliminating and doubling the required amounts of nitrate and phosphate salts in the growth media. A significant twofold increase in total lipid (193.03 mg/g) was achieved in cells in absence of nitrate in the culture medium, followed by phosphate limitation (142.65 mg/g). The intracellular accumulation of neutral lipids was observed by fluorescence microscopy. The scanning electron microscopic study showed the major structural changes under nutrient starvation. Fourier transform infrared spectroscopy (FTIR) revealed the presence of ester (C-O-C stretching), ketone (C-C stretching), carboxylic acid (O-H bending), phosphine (P-H stretching), aromatic (C-H stretching and bending), and alcohol (O-H stretching and bending) groups in the treated cells indicating the high accumulation of lipid hydrocarbons in the treated cells. Elevated levels of fatty acids favorable for biodiesel production, that is, C16:0, C16:1, C18:1, and C20:1, were identified under nitrate- and phosphate-deficient conditions. This study shows that the manipulation of cultural conditions could affect the biosynthetic pathways leading to increased lipid production while increasing the proportion of fatty acids suitable for biodiesel production.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 70 ◽  
Author(s):  
Andreea Pușcaș ◽  
Vlad Mureșan ◽  
Carmen Socaciu ◽  
Sevastița Muste

Legislative limitations of the use of trans and saturated fatty acids, the rising concerns among consumers about the negative effects of some fats on human health, and environmental and health considerations regarding the increased use of palm fat in food and biodiesel production drove to innovations in reformulating fat-containing food products. Oleogelation is one of the most in-trend methods for reducing or replacing the unhealthy and controversial fats in food products. Different edible oleogels are being formulated by various techniques and used in spreads, bakeries, confectioneries, and dairy and meat products. This review exclusively focuses on up-to-date applications of oleogels in food and mechanisms of gelation, and discusses the properties of new products. Research has produced acceptable reformulated food products with similar technological and rheological properties as the reference products or even products with improved techno-functionality; however, there is still a high need to improve oleogelation methods, as well as the technological process of oleogel-based foods products. Despite other strategies that aim to reduce or replace the occurrence of trans and saturated fats in food, oleogelation presents a great potential for industrial application in the future due to nutritional and environmental considerations.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 484 ◽  
Author(s):  
Thanapa Atikij ◽  
Yolani Syaputri ◽  
Hitoshi Iwahashi ◽  
Thanit Praneenararat ◽  
Sophon Sirisattha ◽  
...  

Microalgal lipids are a source of valuable nutritional ingredients in biotechnological industries, and are precursors to biodiesel production. Here, the effects of salt-induced stresses, including NaCl, KCl, and LiCl stresses, on the production of lipid in green microalga Chlamydomonas reinhardtii (137c) were investigated. NaCl stress dramatically increased saturated fatty acids (SFAs), which accounted for 70.2% of the fatty acid methyl ester (FAMEs) under stress. In contrary, KCl stress led to a slight increase in SFAs (47.05%) with the remaining being polyunsaturated fatty acids (PUFAs) (45.77%). RT-PCR analysis revealed that the genes involved in FA biosynthesis, such as PDH2, ACCase, MAT and KAS2, were up-regulated by NaCl-induced stress. Conversely, the genes responsible for the Kennedy pathway were suppressed. The alteration of FA homeostasis was further assessed by overexpressing MAT, the enzyme responsible for the production of malonyl-ACP, a key building block for FA biosynthesis, in the cyanobacterium Synechococcus elongatus PCC 7942. Intracellular FA composition was affected, with a predominant synthesis of SFAs in transformed cells. Owing to the diversity and relative abundance of SFAs, monounsaturated fatty acid (MUFAs) and PUFAs enable the feasibility of using microorganisms as a source of microalgal lipids or valuable nutritional ingredients; salt-induced stress and expression of MAT are useful in providing precursors for enhanced lipid production.


Sign in / Sign up

Export Citation Format

Share Document