scholarly journals Design of a 1 t/h Biomass Chain Boiler and ιts Fuel Adaptability Analysis

2020 ◽  
Vol 13 (5) ◽  
pp. 132-142
Author(s):  
Fu Chengguo ◽  
◽  
Feng Yipeng ◽  
Tian Yishui ◽  
Liang Mingchao ◽  
...  

The arch is an important component of a biomass boiler. Initial arch design of most boilers is generally gained through manual computation, thus resulting in uncertain reasonability of flue gas flow. Moreover, biomass fuels in the market have instable characteristics, which influence the utilization of biomass energies considerably. To address the problems concerning reasonable flue gas flow caused by the collaborative design of arch and air staging and the combustion adaptability of fuels, a cold modeling experiment of a 1 t/h biomass boiler under different staged air distribution ratios when the rear arch coverage varies was conducted using Fluent software in this study after thermal performance computation and initial structural design of grate and furnace. Furthermore, a boiler performance test based on main fuels and a combustion adaptation test of auxiliary fuels were also performed. The experiments show that the best flue gas flow in the furnace is achieved when the rear arch coverage is 60% and the primary–secondary air distribution ratio is 4:6. The mean boiler efficiency and the mean boiler heat output are 81.26% and 715.76 kW/h by using Pinus koraiensis pellets, wood–straw mixed pellets, and cotton straw briquettes as main fuels; and the tested pollutant emissions are in compliance with the limits of the national standard. The results of the combustion adaptation test reveal that the excessive particle size, the high ash content and the relatively low calorific value of biomass molded fuels are all against the combustion of biomass boilers. Fuel upgrading based on washing process and other methods is suggested. This study can provide references to the performance optimization of traditional small-scale biomass chain heating boilers.

2016 ◽  
Vol 832 ◽  
pp. 231-237 ◽  
Author(s):  
Martin Lisý ◽  
Jiří Pospíšil ◽  
Otakar Štelcl ◽  
Michal Špilaček

This paper deals with a use of CFD modelling for optimization of supply of secondary combustion air in the two-chamber biomass boiler combusting very wet biomass (capacity ca. 200 kW). Objective of the analyse is to observe the impact of diameter of a secondary air supply pipe and air flow velocity on mixing of the secondary air with flue gas in the combustion chamber. The numerical model of the experimental boiler was build up for subsequent utilizing of CFD computation based on finite element method. The commercial code STAR-CD was used for carried out parametrical studies. Series of calculations were carried out for four different diameters of air distribution pipes and for 3 different air velocities in distribution orifice. Quality of air dispersion in flue gas flow was assessed in the vertical cross section lead in the end of the combustion chamber. The results of calculation were verified on the experimental installation of the boiler. Influence of secondary air mixing on emission production was measured and analysed. Emissions of pollutants for recommended air distribution comply with emission limits stipulated in the most stringent class 5 according to ČSN-EN 303-5 as well as with emission limits under Regulation No. 405/2012 Sb.


2016 ◽  
Vol 56 (5) ◽  
pp. 379-387 ◽  
Author(s):  
Jiří Pospíšil ◽  
Martin Lisý ◽  
Michal Špiláček

This contribution presents the results of parametrical studies focused on the mixing process in a small rectangular duct within a biomass boiler. The first study investigates the influence of a local narrowing located in the central part of the duct. This narrowing works as an orifice with very simple rectangular geometry. Four different free cross sections of the orifice were considered in the center of the duct, namely 100%, 70%, 50%, 30% of free cross section area in the duct. The second study is focused on the investigation of the influence of secondary air distribution pipe diameter on the mixing process in a flue gas duct without a narrowing.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3955 ◽  
Author(s):  
Paulauskas ◽  
Jõgi ◽  
Striūgas ◽  
Martuzevičius ◽  
Erme ◽  
...  

Over the years, ever more stringent requirements on the pollutant emissions, especially NOX, from combustion systems burning natural gas are introduced by the European Union (EU). Among all NOX reduction methods, the flue gas treatment by plasma is widely applied and could be used for both small scale and domestic combustion systems. However, the removal efficiency depends on concentrations of oxygen, water vapor, traces of hydrocarbons, and nitrogen oxides in flue gas. In order to analyze the application of the NOX reduction for small-scale or domestic combustion systems, experiments of NOX reduction by non-thermal plasma from real flue gases originating from premixed methane combustion at different equivalence ratio (ER) values were performed. It was determined that the residual oxygen in flue gas plays an important role for improvement of NO to NO2 oxidation efficiency when O2 concentrations are equal to or higher than 6%. The power consumption for the plasma oxidation constituted approximately 1% of the burner power. In the case of ozone treatment, the addition of O3 to flue gas showed even more promising results as NO formed during combustion was fully oxidized to NO2 at all ER values.


Author(s):  
Sylwia Polesek-Karczewska ◽  
Izabela Wardach-Święcicka ◽  
Dariusz Kardaś ◽  
Tomasz Turzyński

AbstractThe stationary lumped-cell model was developed and used to simulate the thermal characteristics of domestic biomass boiler with helically coiled tube heat exchanger (HCHE). The device serves as the heat source for ORC (Organic Rankine Cycle) unit and utilizes the thermal oil as the medium transferring the heat to the unit. Most of studies available in the literature refer to the CFD simulations for water flow in tube coils or in one- or two-turn coil elements. These investigations are basically focused on the determination of Nusselt number. The proposed herein model aims at determining the thermal performance of flue gas-oil HCHE while providing low CPU time. To demonstrate the model possibilities, it was used to predict the flue gas temperatures at the inlet and outlet from the heat exchange zone, based on measurement data regarding the outlet temperature of thermal oil. Six test series were considered. The computation results appeared to be in satisfactory agreement with experimental results (the discrepancies do not exceed 12%). The investigations showed that the used approach may be recommended as an alternative method that allows for fast prediction of thermal parameters for units of complex geometries, in particular the multi-coil heat exchangers.


2020 ◽  
Vol 84 ◽  
pp. 127-140
Author(s):  
BM Gaas ◽  
JW Ammerman

Leucine aminopeptidase (LAP) is one of the enzymes involved in the hydrolysis of peptides, and is sometimes used to indicate potential nitrogen limitation in microbes. Small-scale variability has the potential to confound interpretation of underlying patterns in LAP activity in time or space. An automated flow-injection analysis instrument was used to address the small-scale variability of LAP activity within contiguous regions of the Hudson River plume (New Jersey, USA). LAP activity had a coefficient of variation (CV) of ca. 0.5 with occasional values above 1.0. The mean CVs for other biological parameters—chlorophyll fluorescence and nitrate concentration—were similar, and were much lower for salinity. LAP activity changed by an average of 35 nmol l-1 h-1 at different salinities, and variations in LAP activity were higher crossing region boundaries than within a region. Differences in LAP activity were ±100 nmol l-1 h-1 between sequential samples spaced <10 m apart. Variogram analysis indicated an inherent spatial variability of 52 nmol l-1 h-1 throughout the study area. Large changes in LAP activity were often associated with small changes in salinity and chlorophyll fluorescence, and were sensitive to the sampling frequency. This study concludes that LAP measurements in a sample could realistically be expected to range from zero to twice the average, and changes between areas or times should be at least 2-fold to have some degree of confidence that apparent patterns (or lack thereof) in activity are real.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3860
Author(s):  
Mária Hagarová ◽  
Milan Vaško ◽  
Miroslav Pástor ◽  
Gabriela Baranová ◽  
Miloš Matvija

Corrosion of boiler tubes remains an operational and economic limitation in municipal waste power plants. The understanding of the nature, mechanism, and related factors can help reduce the degradation process caused by corrosion. The chlorine content in the fuel has a significant effect on the production of gaseous components (e.g., HCl) and condensed phases on the chloride base. This study aimed to analyze the effects of flue gases on the outer surface and saturated steam on the inner surface of the evaporator tube. The influence of gaseous chlorides and sulfates or their deposits on the course and intensity of corrosion was observed. The salt melts reacted with the steel surface facing the flue gas flow and increased the thickness of the oxide layer up to a maximum of 30 mm. On the surface not facing the flue gas flow, they disrupted the corrosive layer, reduced its adhesion, and exposed the metal surface. Beneath the massive deposits, a local overheating of the inner surface of the evaporator tubes occurred, which resulted in the release of the protective magnetite layer from the surface. Ash deposits reduce the boiler’s thermal efficiency because they act as a thermal resistor for heat transfer between the flue gases and the working medium in the pipes. The effect of insufficient feedwater treatment was evinced in the presence of mineral salts in the corrosion layer on the inner surface of the tube.


2021 ◽  
Vol 11 (7) ◽  
pp. 2961
Author(s):  
Nikola Čajová Kantová ◽  
Alexander Čaja ◽  
Marek Patsch ◽  
Michal Holubčík ◽  
Peter Ďurčanský

With the combustion of solid fuels, emissions such as particulate matter are also formed, which have a negative impact on human health. Reducing their amount in the air can be achieved by optimizing the combustion process as well as the flue gas flow. This article aims to optimize the flue gas tract using separation baffles. This design can make it possible to capture particulate matter by using three baffles and prevent it from escaping into the air in the flue gas. The geometric parameters of the first baffle were changed twice more. The dependence of the flue gas flow on the baffles was first observed by computational fluid dynamics (CFD) simulations and subsequently verified by the particle imaging velocimetry (PIV) method. Based on the CFD results, the most effective is setting 1 with the same boundary conditions as those during experimental PIV measurements. Setting 2 can capture 1.8% less particles and setting 3 can capture 0.6% less particles than setting 1. Based on the stoichiometric calculations, it would be possible to capture up to 62.3% of the particles in setting 1. The velocities comparison obtained from CFD and PIV confirmed the supposed character of the turbulent flow with vortexes appearing in the flue gas tract, despite some inaccuracies.


1990 ◽  
Vol 140 ◽  
pp. 133-134
Author(s):  
J. Panesar ◽  
A.H. Nelson

We report here some preliminary results of 3–D numerical simulations of an α–ω dynamo in galaxies with differential rotation, small–scale turbulence, and a shock wave induced by a stellar density wave. We obtain the magnetic field from the standard dynamo equation, but include the spiral shock velocity field from a hydrodynamic simulation of the gas flow in a gravitational field with a spiral perturbation (Johns and Nelson, 1986).


Sign in / Sign up

Export Citation Format

Share Document