scholarly journals LIQUID HOLDUP MANAGEMENT BY PREDICTING STEADY STATE TURNDOWN RATE IN WET GAS PIPELINE NETWORK

PETRO ◽  
2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Kartika Fajarwati Hartono ◽  
Muhammad Taufiq Fatthadin ◽  
Reno Pratiwi

<p>Now days, one of the greatest challenges in gas development is transport the fluid especially multiphase fluid to long distances and multiphase pipeline to sell point. Yet, a challenge to transport multiphase fluid is how to operate the systemsin operating a long distance, large diameter, and multiphase pipeline.The operating system include how to manage high liquid holdup, mainly built during low production rate (turn down rate) periods especially during transient operations such as restart and ramp-up, so that liquid surge arriving onshore will not exceed the liquid handling capacity of the slug catcher. The objective of this research is to predict liquid trapped in pipeline network by analysis turn down rate in order to determine minimal gas production rate for stable operation. This research was carried out by two steps: Simulation Approach and Optimization Techniques. Simulation approach include define fluid composition and built pipeline network configuration while optimization technique include conduct scenario for turn down rate. The fluid composition from wellhead to manifold is wet gas. First scenario and Second scenario of turndown rate yield minimum gas rate for stable operation. The pipeline has to be operated above 600 MMSCFD from peak gas production rate is 1200 MMSCFD (A-Manifold Mainline) and 60 MMSCFD from peak gas production rate is 150 MMSCFD for D-Manifold Mainline.</p>

2013 ◽  
Vol 864-867 ◽  
pp. 1919-1922
Author(s):  
Yu Qin Ma ◽  
Xiao Xu Fan ◽  
Yan Feng Liu ◽  
Li Guo Yang

Sludges resulting from wastewater treatment processes have a characteristically high water content, which complicates thermal-chemistry disposal. In this paper, taking domestic sewage sludge as the object, on the base of analysis on the material characteristics, the material and energy equilibrium calculation was carried out to study the effect of moisture content in sludge on thermal-chemistry disposal. The results showed that as the moisture content increased, incinerator temperature would reduce and the quality of the gasification gas would decrease with lower calorific value. When the moisture content in sludge increased, the amount of air required for gasification increased, wet gas production rate raised and dry gas production rate decreased, gasification efficiency and thermal efficiency were lower. For the sludge studied, it was required to control the moisture content in sludge to 55% or less if the incinerator temperature of 800 °C and above was wanted; if gasification gas calorific value was required to reach 2MJ/m3 and above, the moisture content in sludge must be controlled at 25% or less.


Author(s):  
Martin Bakken ◽  
Tor Bjørge

The world’s energy demand is increasing, asking for new and cost-efficient ways to extract oil and gas. With traditional technologies, oil and gas production relies on a sufficiently high well head pressure for transportation to nearby process facilities. Utilization of subsea wet gas compression systems enables production at significantly lower pressures and is a favourable solution concerning production in remote regions. Wet gas compressors are particularly useful when handling multiphase mixtures consisting of 95%–100% gas, on a volumetric basis. The remaining content is water and liquid condensate, which introduces flow mechanisms such as droplet deposition, liquid film formation and momentum transfer, which influence the fundamental flow behavior through the compressor. Previous tests have documented the occurrence of compressor hysteresis at low compressor flow rates. Recent findings have revealed the flow interaction between the diffuser and the volute is a governing factor concerning the documented hysteresis. This kind of behaviour induces challenges with regard to compressor performance prediction and securing stable operation. An experimental test campaign has been performed at the Norwegian University of Science and Technology (NTNU). The test facility is an open loop configuration consisting of a shrouded centrifugal impeller, a vaneless diffuser and a circular volute. The test was performed by establishing the compressor characteristics while monitoring the diffuser/volute flow regime. Emphasis was put on the volute flow characteristics and the correlation with the compressor performance. The investigation reveals that the volute flow characteristics and the interaction with the diffuser has a distinct impact on the compressor performance, particularly at lower gas mass fractions. Furthermore, the test reveals that the diffuser design is a key factor concerning the performance impact.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 397-407 ◽  
Author(s):  
Mashhad Mousa Fahes ◽  
Abbas Firoozabadi

Summary Wettability of two types of sandstone cores, Berea (permeability on the order of 600 md), and a reservoir rock (permeability on the order of 10 md), is altered from liquid-wetting to intermediate gas-wetting at a high temperature of 140C. Previous work on wettability alteration to intermediate gas-wetting has been limited to 90C. In this work, chemicals previously used at 90C for wettability alteration are found to be ineffective at 140C. New chemicals are used which alter wettability at high temperatures. The results show that:wettability could be permanently altered from liquid-wetting to intermediate gas-wetting at high reservoir temperatures,wettability alteration has a substantial effect on increasing liquid mobility at reservoir conditions,wettability alteration results in improved gas productivity, andwettability alteration does not have a measurable effect on the absolute permeability of the rock for some chemicals. We also find the reservoir rock, unlike Berea, is not strongly water-wet in the gas/water/rock system. Introduction A sharp reduction in gas well deliverability is often observed in many low-permeability gas-condensate reservoirs even at very high reservoir pressure. The decrease in well deliverability is attributed to condensate accumulation (Hinchman and Barree 1985; Afidick et al. 1994) and water blocking (Engineer 1985; Cimolai et al. 1983). As the pressure drops below the dewpoint, liquid accumulates around the wellbore in high saturations, reducing gas relative permeability (Barnum et al. 1995; El-Banbi et al. 2000); the result is a decrease in the gas production rate. Several techniques have been used to increase gas well deliverability after the initial decline. Hydraulic fracturing is used to increase absolute permeability (Haimson and Fairhurst 1969). Solvent injection is implemented in order to remove the accumulated liquid (Al-Anazi et al. 2005). Gas deliverability often increases after the reduction of the condensate saturation around the wellbore. In a successful methanol treatment in Hatter's Pond field in Alabama (Al-Anazi et al. 2005), after the initial decline in well deliverability by a factor of three to five owing to condensate blocking, gas deliverability increased by a factor of two after the removal of water and condensate liquids from the near-wellbore region. The increased rates were, however, sustained for a period of 4 months only. The approach is not a permanent solution to the problem, because the condensate bank will form again. On the other hand, when hydraulic fracturing is used by injecting aqueous fluids, the cleanup of water accumulation from the formation after fracturing is essential to obtain an increased productivity. Water is removed in two phases: immiscible displacement by gas, followed by vaporization by the expanding gas flow (Mahadevan and Sharma 2003). Because of the low permeability and the wettability characteristics, it may take a long time to perform the cleanup; in some cases, as little as 10 to 15% of the water load could be recovered (Mahadevan and Sharma 2003; Penny et al. 1983). Even when the problem of water blocking is not significant, the accumulation of condensate around the fracture face when the pressure falls below dewpoint pressure could result in a reduction in the gas production rate (Economides et al. 1989; Sognesand 1991; Baig et al. 2005).


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
R. L. J. Fernandes ◽  
B. A. Fleck ◽  
T. R. Heidrick ◽  
L. Torres ◽  
M. G. Rodriguez

Experimental investigation of drag reduction in vertical two-phase annular flow is presented. The work is a feasibility test for applying drag reducing additives (DRAs) in high production-rate gas-condensate wells where friction in the production tubing limits the production rate. The DRAs are intended to reduce the overall pressure gradient and thereby increase the production rate. Since such wells typically operate in the annular-entrained flow regime, the gas and liquid velocities were chosen such that the experiments were in a vertical two-phase annular flow. The drag reducers had two main effects on the flow. As expected, they reduced the frictional component of the pressure gradient by up to 74%. However, they also resulted in a significant increase in the liquid holdup by up to 27%. This phenomenon is identified as “DRA-induced flooding.” Since the flow was vertical, the increase in the liquid holdup increased the hydrostatic component of the pressure gradient by up to 25%, offsetting some of reduction in the frictional component of the pressure gradient. The DRA-induced flooding was most pronounced at the lowest gas velocities. However, the results show that in the annular flow the net effect will generally be a reduction in the overall pressure gradient by up to 82%. The findings here help to establish an envelope of operations for the application of multiphase drag reduction in vertical flows and indicate the conditions where a significant net reduction of the pressure gradient may be expected.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Zhang Jianwen ◽  
Jiang Aiguo ◽  
Xin Yanan ◽  
He Jianyun

The erosion-corrosion problem of gas well pipeline under gas–liquid two-phase fluid flow is crucial for the natural gas well production, where multiphase transport phenomena expose great influences on the feature of erosion-corrosion. A Eulerian–Eulerian two-fluid flow model is applied to deal with the three-dimensional gas–liquid two-phase erosion-corrosion problem and the chemical corrosion effects of the liquid droplets dissolved with CO2 on the wall are taken into consideration. The amount of erosion and chemical corrosion is predicted. The erosion-corrosion feature at different parts including expansion, contraction, step, screw sections, and bends along the well pipeline is numerically studied in detail. For dilute droplet flow, the interaction between flexible water droplets and pipeline walls under different operations is treated by different correlations according to the liquid droplet Reynolds numbers. An erosion-corrosion model is set up to address the local corrosion and erosion induced by the droplets impinging on the pipe surfaces. Three typical cases are studied and the mechanism of erosion-corrosion for different positions is investigated. It is explored by the numerical simulation that the erosion-corrosion changes with the practical production conditions: Under lower production rate, chemical corrosion is the main cause for erosion-corrosion; under higher production rate, erosion predominates greatly; and under very high production rate, erosion becomes the main cause. It is clarified that the parts including connection site of oil pipe, oil pipe set, and valve are the places where erosion-corrosion origins and becomes serious. The failure mechanism is explored and good comparison with field measurement is achieved.


The top 5-50 cm of a peat deposit above the water table are predominantly oxic while below that the peat is anoxic. The concentrations of CH 4 and CO 2 in the peat below 50 cm do not change with the seasons. The concentrations are greatest at or near the base of the peat and decrease quadratically upwards, consistent with a gas production rate (CH 4 + CO 2 ) of 0.03 μ mol cm -3 a -1 and movement by diffusion. The upward efflux of CH 4 , calculated from the concentration profile in deep peat, is 1, and of CO 2 is 17 μ mol m -2 h -1 . Just below the water table there is a small peak in CH 4 concentration. The peak concentrations are greater in summer than in winter. This indicates a second, seasonal and local, but not yet quantified source of CH 4 . Effluxes of CH 4 from the peatland surface range from ordinary summer maxima of about 200 down to winter values less than 10 μ mol m -2 h -1 , and at times negative values. The efflux from hummocks is usually about a third of that from hollows. These results indicate that methane oxidation may be important in hummocks.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 427-428
Author(s):  
Richard R Lobo ◽  
Marcos I Marcondes ◽  
Paulo H Rodrigues ◽  
Antonio Faciola ◽  
Rafael Pinheiro ◽  
...  

Abstract The objective was to identify the non-linear model with the best fit for cumulative gas production from fermentation of fresh alfalfa, with or without tannin extract, incubated with rumen fluid from five different species of ruminants. Fifteen animals (Taurine and Zebuine cattle, water buffaloes, sheep and goats) were used as inoculum donors. During incubation, 500 mg of fresh alfalfa, with or without 150 mg of acacia tannin extract, were used as substrate in the semi-automated gas production technique. Experimental design was completely randomized in a factorial arrangement with five inoculum sources (ruminant specie) and two treatments (with or without tannin extract). We used the PROC NLMIXED to fit ten mathematical models and the best one was chosen based on the lowest AIC and MSE and highest R2. Lastly, the best model was validated using the cross validation technique. The model with the best fit was the Groot model (AIC 1255.5; MSE 174.01; R2 0.9496) comparatively to others methods and the most part of error is from random effect (97.7%). Tannin inclusion reduced parameters potential gas production (A) and time to produce half of total gas production (T1) (P &gt; 0.0001); however, no difference was observed on the gas production rate (k) (P &gt; 0.1181). When no tannin was added, differences between the two cattle category were observed. Comparing water buffaloes’ inoculum with Taurine inoculum, no differences were observed for “A,” however, this parameter differed among water buffaloes and Zebuine cattle. In conclusion, Groot model had the best fit on in vitro bioassay with alfalfa substrate and treated or not with tannin extract. The tannin extract reduced the potential gas production; however, it did not change the gas production rate. For evaluation of alfalfa by cumulative gas production technique, the potential gas production was changed by using different animal categories as inoculum donor.


SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1242-1253 ◽  
Author(s):  
Luigi Raimondi

Summary The simulation of multiphase flow, considered in the case of coexisting vapor and liquid phases, is an important topic in engineering for the design of oil-and-gas production and transportation facilities. This paper presents the development of a compositional approach for the dynamic calculation of multiphase flows in pipelines. This approach can be defined as “full compositional,” because the vapor and liquid phases are described by taking into account the chemical composition, presenting points of interest from both the theoretical and the practical points of view. Physical properties required are calculated at each integration timestep with the actual phase compositions instead of relying on property tables previously generated from a single constant fluid composition. With this approach, in the numerical solution of the conservative two-phase-flow equations, the congruency between the dynamic pressure, calculated by solving the Navier-Stokes equations at constant temperature, and the thermodynamic pressure of the system becomes a critical constraint. In the numerical solution, the overall mass balance defined by means of the vapor- and liquid-phase densities is verified with respect to the mass balance of each chemical component involved, and the system pressure obtained from the solution of the momentum equations is always compared with the thermodynamic value defined by mass balance. Of the numerous test cases created for model validation, three of them (focused on fast depressurizations) are presented and discussed. Similar examples are not available in the literature as solutions of the current “state-of-the-art” commercial pipeline simulators.


Sign in / Sign up

Export Citation Format

Share Document