A Multiphysics Coupling of Resin Infusion and Deformation of Fiber Preform Using Customized STAR-CCM+ and ABAQUS

2022 ◽  
Author(s):  
Jim Lua ◽  
Xuxiao Li ◽  
Muthu Elenchezhian ◽  
Dianyun Zhang
2017 ◽  
Vol 36 (10) ◽  
pp. 780-794 ◽  
Author(s):  
Liangkai Ma ◽  
Siddharth R Athreya ◽  
Rujul Mehta ◽  
Dev Barpanda ◽  
Asjad Shafi

This paper presents an experimentally validated model to simulate the nonisothermal resin infusion and cure processes in a relatively large and thick composite laminate fabricated using vacuum-assisted resin transfer molding. Compaction effects were accounted for by using a step-wise scheme wherein the panel was divided into three discrete zones along the flow direction, with each zone being assigned different porosities and other material properties. The experimentally observed dynamic evolution of the resin flow front profile due to permeability difference between the high-permeable infusion medium and the glass-fiber preform as well as the heat transfer in the preheated system was captured accurately. Both model predictions and experimental measurements indicate subtle variation in the spatiotemporal distributions of temperature and degrees of resin cure from the infusion stage can result in large differences in the resin cure profile across the laminate, which may cause undesirable residual stresses in large composites.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ya-Nan Liu ◽  
Chongxin Yuan ◽  
Chenxiao Liu ◽  
Jie Pan ◽  
Qinghai Dong

2021 ◽  
pp. 096739112098650
Author(s):  
Dah Hee Kim ◽  
Young Seok Song

The purpose of this study is to integrate a polymeric film onto a mold to impede thermal heat transfer during resin infusion. A thin plastic plate was fabricated by using microinjection molding. A polyimide (PI) film was laminated onto a mold in an effort to produce a thin light guide plate (LGP). The film could decelerate the solidification of molten polymer in the cavity of mold and enhance the wall slip of resin on the mold. The insulation effect was modeled numerically. The surface roughness and pattern transfer characteristics of the LGP were evaluated. It was found that the fluidity of the resin increased due to the decreased skin layer during mold filling. The results showed that the strategy proposed in this study could help decrease the thickness of LGP effectively when manufacturing the part via injection molding.


Author(s):  
Ting Liu ◽  
Baiquan Lin ◽  
Xuehai Fu ◽  
Ang Liu

AbstractAlthough a series of hypotheses have been proposed, the mechanism underlying coal and gas outburst remains unclear. Given the low-index outbursts encountered in mining practice, we attempt to explore this mechanism using a multiphysics coupling model considering the effects of coal strength and gas mass transfer on failure. Based on force analysis of coal ahead of the heading face, a risk identification index Cm and a critical criterion (Cm ≥ 1) of coal instability are proposed. According to this criterion, the driving force of an outburst consists of stress and gas pressure gradients along the heading direction of the roadway, whereas resistance depends on the shear and tensile strengths of the coal. The results show that outburst risk decreases slightly, followed by a rapid increase, with increasing vertical stress, whereas it decreases with increasing coal strength and increases with gas pressure monotonically. Using the response surface method, a coupled multi-factor model for the risk identification index is developed. The results indicate strong interactions among the controlling factors. Moreover, the critical values of the factors corresponding to outburst change depending on the environment of the coal seams, rather than being constants. As the buried depth of a coal seam increases, the critical values of gas pressure and coal strength decrease slightly, followed by a rapid increase. According to its controlling factors, outburst can be divided into stress-dominated, coal-strength-dominated, gas-pressure-dominated, and multi-factor compound types. Based on this classification, a classified control method is proposed to enable more targeted outburst prevention.


2016 ◽  
Vol 251 ◽  
pp. 41-46
Author(s):  
Maciej Wnuk ◽  
Artur Iluk

In the production of lightweight composite parts, resin infusion is the leading technology due to its excellent quality-to-cost ratio [1], [2]. Not only is there no need to use expensive equipment such as autoclaves, but the resulting fiber to resin ratio is very high, which makes parts very stiff, strong, and lightweight [3], [4]. Other advantages include a glossy surface and a structure that free of macro-pores, provided when the process is well prepared. The equipment used in this process allows one to manufacture part in virtually any size and shape [5]. The main difficulty is to design resin feed lines in way that will saturate fabrics until the resin gels. To facilitate this process design finite element codes can be used to simulate the flow of resin during infusion [6].


Author(s):  
Geng Wang ◽  
Renjing Gao ◽  
Qi Wang ◽  
Shutian Liu

Electromagnetic linear actuators (ELAs) may be confronted with unsatisfactory performance when subjected to overheating. Therefore, it is significant to clarify its thermal characteristics and design the thermal performance requirements. A thermal analysis method based on multiphysics coupling model was presented, which uses the non-simplified loss distribution as the heat source to calculate the temperature field, adjusts the material properties by temperature, and considers the interaction between motion (including impact) and loss. More importantly, an improved universal equivalent winding to satisfy the condition of real compact concentrated winding was developed. Finally, the validity of this approach was verified through the experiment, and the regularity of temperature was summarized. The results show that the error of simulation and experiment is less than 6% and the permissible continuous operation frequency is no more than 30 Hz. The approach proposed in this paper can be employed not only to the ELA, but also to the design and analysis a wide range of electromagnetic machines.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 178
Author(s):  
Valerio Acanfora ◽  
Roberto Petillo ◽  
Salvatore Incognito ◽  
Gerardo Mario Mirra ◽  
Aniello Riccio

This work provides a feasibility and effectiveness analysis, through numerical investigation, of metal replacement of primary components with composite material for an executive aircraft wing. In particular, benefits and disadvantages of replacing metal, usually adopted to manufacture this structural component, with composite material are explored. To accomplish this task, a detailed FEM numerical model of the composite aircraft wing was deployed by taking into account process constraints related to Liquid Resin Infusion, which was selected as the preferred manufacturing technique to fabricate the wing. We obtained a geometric and material layup definition for the CFRP components of the wing, which demonstrated that the replacement of the metal elements with composite materials did not affect the structural performance and can guarantee a substantial advantage for the structure in terms of weight reduction when compared to the equivalent metallic configuration, even for existing executive wing configurations.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1311 ◽  
Author(s):  
Fabio da Costa Garcia Filho ◽  
Fernanda Santos da Luz ◽  
Lucio Fabio Cassiano Nascimento ◽  
Kestur Gundappa Satyanarayana ◽  
Jaroslaw Wieslaw Drelich ◽  
...  

Natural lignocellulosic fibers and corresponding fabrics have been gaining notoriety in recent decades as reinforcement options for polymer matrices associated with industrially applied composites. These natural fibers and fabrics exhibit competitive properties when compared with some synthetics such as glass fiber. In particular, the use of fabrics made from natural fibers might be considered a more efficient alternative, since they provide multidirectional reinforcement and allow the introduction of a larger volume fraction of fibers in the composite. In this context, it is important to understand the mechanical performance of natural fabric composites as a basic condition to ensure efficient engineering applications. Therefore, it is also important to recognize that ramie fiber exhibiting superior strength can be woven into fabric, but is the least investigated as reinforcement in strong, tough polymers to obtain tougher polymeric composites. Accordingly, this paper presents the preparation of epoxy composite containing 30 vol.% Boehmeria nivea fabric by vacuum-assisted resin infusion molding technique and mechanical behavior characterization of the prepared composite. Obtained results are explained based on the fractography studies of tested samples.


Sign in / Sign up

Export Citation Format

Share Document