scholarly journals Influence of Kawergosk Refinery Waste Oil on Geotechnical Properties of Contaminated Clayey Soil

2019 ◽  
Vol 9 (1) ◽  
pp. 64-73
Author(s):  
Ferzand K. Medhat ◽  
Mehmet Carpuzcu ◽  
Ali Firat Cabalar ◽  
Ahmed Al-Obaidi

This study presents the effect of Kawergosk refinery waste oil on the geotechnical properties of Erbil clayey soils. A comparison of laboratory test results on uncontaminated clayey soils has been presented and examined. Refinery waste oil of Kawergosk (20 km west of Erbil city) was chosen as the contaminant. A disturbed soil samples were collected from the site which are remolded in the laboratory before each test to represent the field dry density (1.4 gm/cm3, 5.6% water content). Laboratory investigations were carried out on soil samples with 5%, 10%, 15%, and 20% of the waste oil, the results showed a considerable effect on the chemical soil characteristics, while a slight increase of the values of Atterberg limits was observed. A considerable effect on the values of one-dimensional consolidation test parameters has also been observed; the same observation has been seen for the values of direct shear test parameters. A reduction on the values of conductivity coefficient, K has been noticed with increase of contaminated percentage.

Author(s):  
Mahdi O. Karkush ◽  
Shahad D. Ali

In this research, the effectsof coppersulfate contamination on the chemical, physical and mechanical properties of cohesive soil have been studied and compared with the properties of intact soil. Soil sampleswere obtained from Al-Ahdab oil field in Wasit governorate, located in the east of Iraq. In the laboratory, the soil specimens were contaminated artificiallywith three quantities of copper sulfate) CuSO4.5H2O) (100, 200 and 400) gm. The contaminantwas dissolved in 10 liters of distilled water and then added to the intact soil. The intact soil samplekept soaked with the contaminantfor 30 days. Several tests were conducted onthe soil samples (intact and contaminated) to measure the effects of copper sulfate on the geotechnical properties of clayey soil. The results of tests showed significant effectsfor copper on the studied soil properties. The copper sulfate causesdecreasing the percentage of fine particles in the soil, Atterberg s limits, permeability and optimum water content. Inaddition, the copper sulfate causes increasing thespecific gravity andmaximum dry density of soil. The shear strength parameters of soil are measured by using direct shear test, unconfined compression test and unconsolidated undrained triaxial test are decreased with increasing the concentration of copper sulfate in soil. Also, its noted increasing the initial void ratio, the compression index and recompression index with increasing concentration of contaminant in soil.


2020 ◽  
Vol 26 (7) ◽  
pp. 145-157
Author(s):  
Zozk Kawa Abdalqadir ◽  
Nihad Bahaaldeen Salih ◽  
Soran Jabbar Hama Salih

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil. The conducted tests are consistency limits, specific gravity, hydrometer analysis, modified Proctor compaction, swelling pressure, swelling percent, unconfined compressive strength, and California Bearing Ratio (Soaked CBR). The results showed that the values of liquid limit, plasticity index, optimum moisture content, swelling pressure, and swelling percent were decreased when stabilized the soil. However, the values of maximum dry density, unconfined compressive strength, and California bearing ratio were increased with the addition of steel slag with various percentages to the clayey soil samples. The steel slag was found to be successfully improving the geotechnical properties of clayey soils.


2018 ◽  
Vol 4 (3) ◽  
pp. 509 ◽  
Author(s):  
Mahdi O Karkush ◽  
Mahmoud S Abdul Kareem ◽  
Mustafa M Jasim

The present study devoted to determine the ultimate lateral carrying capacity of piles foundation in contaminated clayey soils and subjected to lateral cyclical loading. Two methods have been used to calculate the lateral carrying capacity of piles foundation; the first one is two-line slopes intersection method (TLSI) and the second method is a modified model of soil degradation. The model proposed by Heerama and then developed by Smith has been modified to take into consideration the effects of heavy loads and soil contamination. The ultimate lateral carrying capacity of single pile and piles group (2×2) driven into samples of contaminated clayey soils have been calculated by using the two methods. Clayey soil samples are contaminated with four percentages of industrial wastewater (10, 20, 40 and 100) % of the distilled water used in the soaking process, the soaking procedure of soil samples have been proceeded for 30 days. Also, two ratios of eccentricity to embedded length (e/L = 0.25 and 0.5) have been examined. The results obtained from two analytical methods are well agreed with those obtained experimentally. The ultimate lateral carrying capacity, Pu (analytical) /Pu (experimentally) ranged from (75-8) % and (77-80) % of single pile with e/L = 0.25 and 0.5 respectively. In the piles group the ratio ranged (67-80) % and (71-79) % for e/L = 0.25 and 0.5 respectively.


Author(s):  
Hussein Jalal Aswad Hassan ◽  
Jabar Rasul ◽  
Maleaha Samin

AbstractRecently, the use of plastic products, such as polyethylene (PE) bottles and polypropylene (PP), has been significantly increased, which may lead to many environmental issues. Therefore, it is important to find methods to manage these waste materials without causing any ecological hazards. One of these methods is to use plastic wastes as soil stabiliser materials. In this study, PE and PP have been used in the form of fibres. The effect of the stabilisation was evaluated through carrying out standard laboratory tests. These tests have been conducted on natural and stabilised soils with four fibre contents (1%, 2%, 3%, and 4%) of the soil weight. The tests included the standard compaction test, unconfined compressive strength (UCS) test, California Bearing Ratio (CBR) test, and resilient modulus (Mr) tests. In all these tests, the fibre content was added in two lengths, which were 1.0 cm and 2.0 cm. Laboratory test results revealed that the plastic pieces decrease maximum dry density (MDD) and optimum moisture content (OMC) of the stabilised soils, which are required for the construction of embankments of lightweight materials. In addition, there was a significant improvement in the UCS of soils by 76.4 and 96.6% for both lengths of PE fibres and 57.4% and 73.0% for both lengths of PP fibres, respectively. Results of the CBR tests demonstrated that the inclusion of plastic fibres in clayey soils improves the strength and deformation behaviour of the soil especially with 4% fibre content for both lengths 1.0 cm and 2.0 cm, respectively, to a figure of 185 to 150% for PE and PP, respectively. Furthermore, the results of the Mr tests demonstrated that the mechanical properties improved to an extent. For an increase in fibre content, the resilient modulus increased by about 120% at 4% fibre content for PE. However, for PP, improvement in resilient modulus declined at 3% fibre content. Therefore, for soil stabilisation with fibre material, optimum fibre content shall be sought.


2020 ◽  
Vol 26 (11) ◽  
pp. 150-169
Author(s):  
Tavga Aram Abdalla ◽  
Nihad Bahaaldeen Salih

Cohesive soils present difficulties in construction projects because it usually contains expansive clay minerals. However, the engineering properties of cohesive soils can be stabilized by using various techniques. The research aims to elaborate on the influences of using hydrated lime on the consistency, compaction, and shear strength properties of clayey soil samples from Sulaimnai city, northern Iraq. The proportions of added hydrated lime are 0%, 2.5%, 5%, 7.5% and 10% to the natural soil sample. The results yielded considerable effects of hydrated lime on the engineering properties of the treated soil sample and enhancement its strength. The soil's liquid limit, plasticity index, and optimum moisture content were decreased with the increase of hydrated lime percent. The soil's other geotechnical properties such as plastic limit, maximum dry density, and unconfined compressive strength were increased with the hydrated lime content increase. The oedometer test results produced a notable decrease in the compressibility characteristics of the lime-treated soil sample. Hence, hydrated lime is successfully contributed and can be considered as an effective material to improve the strength, compressibility, and consistency properties of the cohesive soils in Sulaimani city.


Author(s):  
А. Sarsembayeva ◽  
◽  
A. Zhusshupbekov ◽  
Ph.E.F. Collins ◽  
◽  
...  

Frost heaving in clayey soils with a low coefficient of permeability raises a lot of questions regarding the cryosuction, surface tension forces, and accompanying phase transfer of water. The freeze-thaw laboratory test results were considered in this work in terms of temperature and volumetric parameters change, dry density, and water mass transfer. The article presents a model for calculating the mass transfer of water (vapour) in the gas state under the influence of cryogenic forces. Findings include the improved understanding of the heat and mass transfer phenomenon during the unidirectional freezing of soils in an open system. Most of the tests for engineering properties registered a slight reduction in relation to strength, cohesion, and angle of internal friction. However, there was a significant increase in the coefficient of permeability after the freeze-thaw cycles with initially dense compacted soil samples, which was due to loosening and moistening of the soil samples during the heave at sub-zero temperatures. The conceptual model for frost heave in soils was developed based on the vapour mass transfer. There was presented algorithm of vapour flow calculation in unsaturated soils using fundamental thermodynamic equations.


2017 ◽  
Vol 63 (1) ◽  
pp. 47-62 ◽  
Author(s):  
M. O. Karkush ◽  
T. A. A. Al-Taher

Abstract The impacts of industrial wastewater contamination on the geotechnical properties of clayey soil have been studied in the research presented in this paper. The contaminant in question is industrial wastewater released from Thi-Qar oil refinery as a by-product of production, and the soil samples obtained from Thi-Qar oil refinery plant in Al-Nassyriah (a city located in the south of Iraq). The geotechnical properties of contaminated soil samples were compared with those of intact soil to measure the effects of such a contaminant. The soil samples were obtained from three locations in the study area; representing the highly contaminated area, the slightly contaminated area, and the intact area used as a reference for comparison of test results. The results of the tests showed that the contaminant causes an increase of natural moisture content, field unit weight, Atterberg’s limits, and maximum dry unit weight, as well as an increase of the compression index and the coefficient of vertical consolidation. Also, the contaminant causes a decrease in specific gravity, the optimum moisture content initial void ratio, the swelling index, the coefficient of permeability, and cohesion between soil particles.


2018 ◽  
Vol 162 ◽  
pp. 01006
Author(s):  
Hussein Karim ◽  
Makki Al-Recaby ◽  
Maha Nsaif

The problems of soft clayey soils are taken in considerations by many Iraqi geologists and civil engineers, because about 35% of the Iraqi clay soils (especially southern Iraq) are weak. Thus, it is necessary to improve the properties of such soils for road construction by means of using of various stabilizers such as sawdust ash. The main goal of the present study is to stabilize soft clay models with sawdust ash (SDA) additive using different percentages (0, 2, 4, 6, 8 and 10% by dry weight of soil). The results revealed that the additive has adverse effects on the property of soil indices by increasing its liquid limit and plasticity index due to clay content. The mixture of sawdust ashes with soft clay soils improves most other physical and mechanical properties of the soil, as expressed by a general reduction in specific gravity and maximum dry density (MDD), as well as a reduction in the compression coefficients (Cc and Cr) with an increase in SDA content. While increasing the optimum moisture content (OMC) and the undrained shear strength (cu) with the increase in SDA content. The stabilized soils (with 4 and 10% ash content) resulted in low CBR values (1.6-1.2%) which can be used as sub-base. The SDA can be considered as a cheap and acceptable stabilizing agent in road construction for improving most of the geotechnical properties of the soft clayey soil.


Author(s):  
Ashraf Ghanem ◽  

It may be necessary to improve the engineering properties of clayey soils to make them suitable for construction by using some kind of stabilization methods. Treatment with lime, cement or waste materials such as silica fume (SF) has traditionally been used for the stabilization of clayey soils. The soil chosen in this research was extracted from a site in Edfu- Aswan, Egypt. Investigating the effect of properties of cohesive soils when mixed with SF is the main objective of this study. Silica fume is a mineral made up of ultra-fine solid, amorphous silicon dioxide glass spheres (SiO2) from the metallurgical industries company (E.JS.C) in Edfu. A series of laboratory experiments for samples prepared with different percentages were implemented of SF 0%, 2%, 4%, 6%,8%, and 10%. The results show that the blend will increase the maximum dry density of clayey soils. Their Plasticity Index and the liquid limit would increase, the permeability of clayey soil decreases, the unconfined compression strength will increase. All of these results can be summarized to say that the engineering properties of cohesive soils can be improved by combining Silica Fume and clayey soils together.


Sign in / Sign up

Export Citation Format

Share Document