Wellbore Shielding Technique Increases Operative Window, Avoiding Formation Instability and Losses, Minimizing NPT, and Optimizing Drilling Operations in the Unconventional Plays

2021 ◽  
Author(s):  
Gaston Lopez ◽  
Gonzalo Vidal ◽  
Claus Hedegaard ◽  
Reinaldo Maldonado

Abstract Losses, wellbore instability, and influxes during drillings operations in unconventional fields result from continuous reactivity to the drilling fluid causing instability in the microfractured limestone of the Quintuco Formation in Argentina. This volatile situation becomes more critical when drilling operations are navigating horizontally through the Vaca Muerta Formation, a bituminous marlstone with a higher density than the Quintuco Formation. Controlling drilling fluids invasion between the communicating microfractures and connecting pores helps to minimize seepage losses, total losses, wellbore fluid influxes, and instabilities, reducing the non-productive time (NPT) caused by these problems during drilling operations. The use of conventional sealants – like calcium carbonate, graphite, asphalt, and other bridging materials – does not guarantee problem-free drilling operations. Also, lost circulation material (LCM) is restricted because the MWD-LWD tools clearances are very narrow in these slim holes. The challenge is to generate a strong and resistant seal separating the drilling fluid and the formation. Using an ultra-low-invasion technology will increase the operative fracture gradient window, avoid fluid invasion to the formation, minimize losses, and stop the cycle of fluid invasion and instability, allowing operations to maintain the designed drilling parameters and objectives safely. The ultra-low-invasion wellbore shielding technology has been applied in various fields, resulting in significantly improved drilling efficiencies compared to offset wells. The operator has benefited from the minimization of drilling fluids costs and optimization in drilling operations, including reducing the volume of oil-based drilling fluids used per well, fewer casing sections, and fewer requirements for cementing intervals to solve lost circulation problems. This paper will discuss the design of the ultra-low-invasion technology in an oil-based drilling fluid, the strategy for determining the technical limits for application, the evaluation of the operative window with an increase in the fracture gradient, the optimized drilling performance, and reduction in costs, including the elimination of NPT caused by wellbore instability.

2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
J. Abdo ◽  
M. Danish Haneef

The idea of pushing the limits of drilling oil and gas wells by improving drilling fluids for undemanding and cost efficient drilling operations by extracting advantage from the wonders of nanotechnology forms the basis of the work presented here. Foremost, in order to highlight the significance of reducing the size distribution of particles, new clay ATR which has a chain like structure and offers enormous surface area and increased reactivity was tested in different sizes that were chemically and mechanically milled. Bentonite which is a commonly used drilling fluid additive was also tested in different particle size distribution (PSD) and rheological properties were tested. Significant reduction in viscosity with small sized particles was recorded. The tested material called ATR throughout this paper is shown to offer better functionality than bentonite without the requirement of other expensive additives. Experiments were performed with different size distributions and compositions and drastic changes in rheological properties are observed. A detailed investigation of the shear thinning behavior was also carried out with ATR samples in order to confirm its functionality for eliminating the problem of mechanical and differential pipe sticking, while retaining suitable viscosity and density for avoidance of problems like lost circulation, poor hole cleaning and inappropriate operating hydrostatic pressures.


2021 ◽  
Author(s):  
Chen Hongbo ◽  
Okesanya Temi ◽  
Kuru Ergun ◽  
Heath Garett ◽  
Hadley Dylan

Abstract Recent studies highlight the significant role of drilling fluid elasticity in particle suspension and hole cleaning during drilling operations. Traditional methods to quantify fluid elasticity require the use of advanced rheometers not suitable for field application. The main objectives of the study were to develop a generalized model for determining viscoelasticity of a drilling fluid using standard field-testing equipment, investigate the factors influencing drilling fluid viscoelasticity in the field, and provide an understanding of the viscoelasticity concept. Over 80 fluid formulations used in this study included field samples of oil-based drilling fluids as well as laboratory samples formulated with bentonite and other polymers such as partially-hydrolyzed polyacrylamide, synthesized xanthan gum, and polyacrylic acid. Detailed rheological characterizations of these fluids used a funnel viscometer and a rotational viscometer. Elastic properties of the drilling fluids (quantified in terms of the energy required to cause an irreversible deformation in the fluid's structure) were obtained from oscillatory tests conducted using a cone-and-plate type rheometer. Using an empirical approach, a non-iterative model for quantifying elasticity correlated test results from a funnel viscometer and a rotational viscometer. The generalized model was able to predict the elasticity of drilling fluids with a mean absolute error of 5.75%. In addition, the model offers practical versatility by requiring only standard drilling fluid testing equipment to predict viscoelasticity. Experimental results showed that non-aqueous fluid (NAF) viscoelasticity is inversely proportional to the oil-water ratio and the presence of clay greatly debilitates the elasticity of the samples while enhancing their viscosity. The work efforts present a model for estimating drilling fluid elasticity using standard drilling fluid field-testing equipment. Furthermore, a revised approach helps to describe the viscoelastic property of a fluid that involves quantifying the amount of energy required to irreversibly deform a unit volume of viscoelastic fluid. The methodology, combined with the explanation of the viscoelasticity concept, provides a practical tool for optimizing drilling operations based on the viscoelasticity of drilling fluids.


2021 ◽  
Author(s):  
Mehrdad Gharib Shirangi ◽  
Roger Aragall ◽  
Reza Ettehadi ◽  
Roland May ◽  
Edward Furlong ◽  
...  

Abstract In this work, we present our advances to develop and apply digital twins for drilling fluids and associated wellbore phenomena during drilling operations. A drilling fluid digital twin is a series of interconnected models that incorporate the learning from the past historical data in a wide range of operational settings to determine the fluids properties in realtime operations. From several drilling fluid functionalities and operational parameters, we describe advancements to improve hole cleaning predictions and high-pressure high-temperature (HPHT) rheological properties monitoring. In the hole cleaning application, we consider the Clark and Bickham (1994) approach which requires the prediction of the local fluid velocity above the cuttings bed as a function of operating conditions. We develop accurate computational fluid dynamics (CFD) models to capture the effects of rotation, eccentricity and bed height on local fluid velocities above cuttings bed. We then run 55,000 CFD simulations for a wide range of operational settings to generate training data for machine learning. For rheology monitoring, thousands of lab experiment records are collected as training data for machine learning. In this case, the HPHT rheological properties are determined based on rheological measurement in the American Petroleum Institute (API) condition together with the fluid type and composition data. We compare the results of application of several machine learning algorithms to represent CFD simulations (for hole cleaning application) and lab experiments (for monitoring HPHT rheological properties). Rotating cross-validation method is applied to ensure accurate and robust results. In both cases, models from the Gradient Boosting and the Artificial Neural Network algorithms provided the highest accuracy (about 0.95 in terms of R-squared) for test datasets. With developments presented in this paper, the hole cleaning calculations can be performed more accurately in real-time, and the HPHT rheological properties of drilling fluids can be estimated at the rigsite before performing the lab experiments. These contributions advance digital transformation of drilling operations.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Abdulmalek Ahmed ◽  
Salaheldin Elkatatny ◽  
Abdulwahab Ali ◽  
Mahmoud Abughaban ◽  
Abdulazeez Abdulraheem

Drilling a high-pressure, high-temperature (HPHT) well involves many difficulties and challenges. One of the greatest difficulties is the loss of circulation. Almost 40% of the drilling cost is attributed to the drilling fluid, so the loss of the fluid considerably increases the total drilling cost. There are several approaches to avoid loss of return; one of these approaches is preventing the occurrence of the losses by identifying the lost circulation zones. Most of these approaches are difficult to apply due to some constraints in the field. The purpose of this work is to apply three artificial intelligence (AI) techniques, namely, functional networks (FN), artificial neural networks (ANN), and fuzzy logic (FL), to identify the lost circulation zones. Real-time surface drilling parameters of three wells were obtained using real-time drilling sensors. Well A was utilized for training and testing the three developed AI models, whereas Well B and Well C were utilized to validate them. High accuracy was achieved by the three AI models based on the root mean square error (RMSE), confusion matrix, and correlation coefficient (R). All the AI models identified the lost circulation zones in Well A with high accuracy where the R is more than 0.98 and RMSE is less than 0.09. ANN is the most accurate model with R=0.99 and RMSE=0.05. An ANN was able to predict the lost circulation zones in the unseen Well B and Well C with R=0.946 and RMSE=0.165 and R=0.952 and RMSE=0.155, respectively.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Biao Ma ◽  
Xiaolin Pu ◽  
Zhengguo Zhao ◽  
Hao Wang ◽  
Wenxin Dong

The lost circulation in a formation is one of the most complicated problems that have existed in drilling engineering for a long time. The key to solving the loss of drilling fluid circulation is to improve the pressure-bearing capacity of the formation. The tendency is to improve the formation pressure-bearing capacity with drilling fluid technology for strengthening the wellbore, either to the low fracture pressure of the formation or to that of the naturally fractured formation. Therefore, a laboratory study focused on core fracturing simulations for the strengthening of wellbores was conducted with self-developed fracture experiment equipment. Experiments were performed to determine the effect of the gradation of plugging materials, kinds of plugging materials, and drilling fluid systems. The results showed that fracture pressure in the presence of drilling fluid was significantly higher than that in the presence of water. The kinds and gradation of drilling fluids had obvious effects on the core fracturing process. In addition, different drilling fluid systems had different effects on the core fracture process. In the same case, the core fracture pressure in the presence of oil-based drilling fluid was less than that in the presence of water-based drilling fluid.


2018 ◽  
Author(s):  
Ζήσης Βρύζας

Η γεώτρηση αποτελεί την πλέον δαπανηρή εργασία σε μια καμπάνια εξεύρεσης και παραγωγής υδρογονανθράκων. Πέραν αυτού συνιστά και την μοναδική διεργασία που δίνει τη δυνατότητα ακριβούς προσδιορισμού των αποθεμάτων στο υπέδαφος. Ο πολφός (γεωτρητικά ρευστά) είναι το ‘αίμα’ της γεώτρησης: παρέχει πίεση, μεταφορά τριμμάτων/θραυσμάτων από τον πυθμένα του φρέατος, ψύξη και λίπανση κοπτικού και στήλης, καθώς επίσης διατηρεί τα θραύσματα εν αιωρήσει όταν υπάρχει διακοπή της κυκλοφορίας. Ως ρευστό γεώτρησης (drilling fluid) χρησιμοποιείται συνήθως ένα αιώρημα πηλού και άλλων υλικών σε νερό. Τα ρευστά διάτρησης με βάση το νερό αποτελούνται από α) νερό, το οποίο αποτελεί την συνεχή φάση και παρέχει το αρχικό ιξώδες (φρέσκο ή θαλασσινό), β) ενεργά στερεά για την ενίσχυση του ιξώδους και του σημείου διαρροής (μπεντονίτης, που συνιστάται στην περίπτωση του φρέσκου νερού και ατταπουλγίτης, αμίαντος ή σιπιόλιθος, που συνιστώνται στην περίπτωση του θαλασσινού νερού), και γ) αδρανή στερεά για την επίτευξη της απαιτούμενης πυκνότητας (βαρύτης, θειούχος μόλυβδος, σιδηρομεταλλεύματα ή χαλαζιακά υλικά).Τα γεωτρητικά ρευστά αποτελούν το 10-20% του συνολικού κόστους κατά την διάρκεια μιας γεώτρησης. Ποσοστό πολύ υψηλό όταν μιλάμε για επενδύσεις εκκατομυρίων δολλαρίων. Λόγω των ολοένα πιο βαθιών αλλά και περίπλοκων γεωλογικών σχηματισμών υπάρχει τεράστια ανάγκη από την πετρελαική βιομηχανία για καινούργια και περισσότερο αποδοτικά γεωτρητικά ρευστά τα οποία θα μπορούν να ανταπεξέλθουν στα ολοένα και πιο απαιτητικά περβάλλοντα θερμοκρασίας και πίεσης. Τα σημαντικότερα ζητήματα τα οποία καλούνται να ανταποκριθούν τα ρευστά είναι οι ολοένα αυξανόμενες συνθήκες πίεσης και θερμοκρασίας στο υπέδαφος που είναι απόροια της αναζήτησης υδρογονανθράκων σε πλέον δύσβατες περιοχές με μεγαλύτερα βάθη που αυξάνουν τους κινδύνους και το κόστος για μια γεώτρηση. Η απώλεια ρευστού κυκλοφορίας (fluid loss) είναι ένα από τα σημαντικότερα και πλέον δαπανηρά προβλήματα κατά την διαδικασία μιας γεώτρησης. Ως απώλεια ρευστού κυκλοφορίας ορίζεται η συνολική ή μερική απώλεια των ρευστών της γεώτρησης σε εξαιρετικά διαπερατές ζώνες (porous sands), σε σπηλαιώδεις σχηματισμούς (cavernous zones), σε φυσικές ρηγματώσεις (natural fractures) και σε ρηγματώσεις προκαλούμενες κατά τη διάτρηση (induced fractures). Τα τελευταία χρόνια έχουν γίνει αρκετές προσπάθειες για την βελτίωση των γεωτρητικών ρευστών με την χρήση νανοσωματιδίων, τα οποία έχουν τη δυνατότητα να βελτιώσουν τις ιδιότητες των γεωτρητικών ρευστών όταν προστίθενται ακόμα και σε χαμηλές συγκεντρώσεις (<1 wt%). Οι μοναδικές τους ιδιότητες σχετίζονται με το μικρό τους μέγεθος και επομένως τον εξαιρετικά μεγάλο λόγο επιφάνειας προς όγκο.Σε αυτή την εργασία, εξετάστηκαν διάφορα εμπορικά νανοσωματίδια (Fe2O3, Fe3O4, SiO2) καθώς επίσης συντέθηκαν, με την μέθοδο της συγκαταβύθισης, νανοσωματιδία μαγνητίτη (custom-made Fe3O4), με και χωρίς επικάλυψη κιτρικού οξέος, τα οποία ερευνήθηκαν ως προς την ικανότητα τους να βελτιώσουν τις ρεολογικές ιδιότητες και την απώλεια ρευστών σε αιωρήματα μπετονίτη. Προκειμένου να χαρακτηρισθούν φυσικοχημικά τα αιωρήματα υπέστησαν ξήρανση με κοκκοποίηση σε θερμοκρασία υγρού Ν2 και κρυοξήρανση. Η μορφολογία, η κρυσταλλική δομή και οι επιφανειακές ομάδες των ξηρών κόνεων εξετάσθηκαν με ηλεκτρονική μικροσκοπία HR-TΕM, περίθλαση ακτίνων Χ (XRD), φυσική ρόφηση Ν2 και φασματοσκοπία FTIR. Οι αλληλεπιδράσεις των σωματιδίων μπετονίτη με τα νανοσωματίδια και οι διάφορες δομές που δημιουργούνται και πως τελικά αυτές επηρεάζουν τις ρεολογικές ιδιότητες των αιωρημάτων εξετάστηκαν με το HR-TEM στους 25°C και 60°C. Με βάση τις εικόνες από το HR-TEM, ένα μοντέλο αλληλεπιδράσεων μεταξύ των διαφορετικών τύπων νανοσωματιδίων και σωματιδίων μπετονίτη δημιουργήθηκε για πρώτη φορά για τέτοια αιωρήματα. Οι ρεολογικές ιδιότητες των παραγόμενων δειγμάτων εξετάστηκαν και σε συνθήκες ατμοσφαιρικής πίεσης (μέχρι 70°C) με την χρήση περιστροφικού ιξωδόμετρου (Grace M3600-Couette type geometry) αλλά και σε συνθήκες υψηλής πίεσης και θερμοκρασίας (69 bar-121°C) (Chandler 7600 HPHT viscometer). Το μοντέλο Herschel-Bulkley χρησιμοποιήθηκε για να περιγράψει τη μεταβολή του ιξώδους με τη μεταβολή των ρεολογικών παραμέτρων δείχνοντας εξαιρετική εφαρμογή για τις διαφορετικές πειραματικές μετρήσεις με συντελεστές συσχέτισης (R2) >0.99 σε όλες τις περιπτώσεις. Οι ρεολογικές μετρήσεις έδειξαν ότι η προσθήκη των νανοσωματιδίων βελτιώνει σημαντικά τις ρεολογικές ιδιότητες των αιωρημάτων μπετονίτη στις διάφορες συνθήκες πίεσης και θερμοκρασίας. Οι απώλειες ρευστών (fluid loss) εξετάστηκαν με φιλτροπρέσες υψηλής πίεσης και θερμοκρασίας (20.7 bar και 121°C) οι οποίες υπολογίζουν τον ρυθμό διήθησης του πολφού μέσω του χρησιμοποιούμενου φίλτρου (κεραμικός δίσκος). Η μεγαλύτερη μείωση στην απώλεια ρευστών επιτεύχθηκε για το δείγμα που περιείχε 0.5 wt% custom-made Fe3O4 με μείωση -40% σε σχέση με το αρχικό δείγμα μπετονίτη που δείχνει την τεράστια ικανότητα των νανοσωματιδίων να βελτιώσουν σημαντικά τις απώλειες ρευστών ακόμα και σε τόσο μικρές συγκεντρώσεις. Τέλος, εξετάστηκε η ικανότητα των παραγόμενων ρευστών να αλλάζουν τις ρεολογικές τους ιδιότητες υπό την επίδραση διάφορων μαγνητικών πεδίων (μέχρι 0.7 Tesla). Τα αποτελέσματα έδειξαν ότι τα καινούργια γεωτρητικά ρευστά έχουν την ικανότητα να αυξάνουν την τάση διολίσθησης (yield stress) έως και 300% σε σχέση με αυτή που μετρήθηκε χωρίς την εφαρμογή μαγνητικού πεδίου. Αυτό είναι κάτι πολύ σημαντικό που επιτρέπει την χρήση έξυπνων ρευστών (smart drilling fluids) τα οποία μπορούν να εξοικονομήσουν και χρόνο αλλά και κόστη κατά την διάρκεια μιας γεώτρησης.Τα νανοσωματίδια δείχνουν πολλές ελπιδοφόρες δυνατότητες σε εφαρμογές γεωτρήσεων αφού έχουν τη δυνατότητα να βελτιώσουν ή και να λύσουν το πρόβλημα της απώλειας ρευστών, όταν προστίθενται ακόμα και σε χαμηλές συγκεντρώσεις (>0.5 wt%), ενώ ταυτόχρονα βελτιστοποιούν τις ρεολογικές ιδιότητες των γεωτρητικών ρευστών. Η χρήση τους για την ανάπτυξη βελτιωμένων γεωτρητικών ρευστών υπόσχεται να αλλάξει την βιομηχανία των γεωτρήσεων και να την βοηθήσει να εξορυχθούν πολύπλοκοι γεωλογικοί σχηματισμοί πιο αποδοτικά αλλά και οικονομικά.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Felipe Chagas ◽  
Paulo R. Ribeiro ◽  
Otto L. A. Santos

Abstract The demand for energy has increased recently worldwide, requiring new oilfield discoveries to supply this need. Following this demand increase, challenges grow in all areas of the petroleum industry especially those related to drilling operations. Due to hard operational conditions found when drilling complex scenarios such as high-pressure/high-temperature (HPHT) zones, deep and ultradeep water, and other challenges, the use nonaqueous drilling fluids became a must. The reason for that is because this kind of drilling fluid is capable to tolerate these extreme drilling conditions found in those scenarios. However, it can experience changes in its properties as a result of pressure and temperature variations, requiring special attention during some drilling operations, such as the well control. The well control is a critical issue since it involves safety, social, economic, and environmental aspects. Well control simulators are a valuable tool to support well control operations and preserve the well integrity, verifying operational parameters and to assist drilling engineers in the decision-making process during well control operations and kick situations. They are also important computational tools for rig personnel training. This study presents well control research and development contributions, as well as the results of a computational well control simulator that applies the Driller's method and allows the understanding the thermodynamic behavior of synthetic drilling fluids, such as n-paraffin and ester base fluids. The simulator employed mathematical correlations for the drilling fluids pressure–volume–temperature (PVT) properties obtained from the experimental data. The simulator results were compared to a test well data set as well to the published results from other kick simulators.


Author(s):  
Syed Y. Nahri ◽  
Yuanhang Chen ◽  
Wesley Williams ◽  
Otto Santos ◽  
Louis Thibodeaux ◽  
...  

Abstract The prevention and control of gas kicks is a major concern in the petroleum industry during deepwater drilling operations. The problem is further aggravated when dealing with synthetic and oil-based muds (SOBM and OBM) that can dissolve a gas influx entering the wellbore. Due to the solubility of formation gases in drilling fluids, the gas cut mud resulting from gas absorption has a density lower than that of overlaying unsaturated drilling fluid. Lab scale experimental tests were conducted in order to understand whether buoyancy-induced convection and diffusion attribute to mass transfer of a dissolved influx. Experiments were performed on a low-pressure mass transfer apparatus using carbon-dioxide (CO2) and mineral oil to study the extent of mass transfer due to buoyancy induced convective flow and diffusion. Measurements were made on the axial distance travelled by the dissolved carbon dioxide and gas concentration over the length of a pipe by measuring the mass of gas accumulated in different test sections of the experimental apparatus. This arises due to a concentration gradient developed when contaminated fluid comes in contact with a fresh column of drilling fluid. Experimentally obtained measurements made on the mass transfer coefficient are used to tune simulations carried out using a computational fluid dynamic (CFD) software — ANSYS Fluent. This enables us to replicate field scenarios to study the extent of well control issues that could arise when a gas influx enters the wellbore, even when circulation has ceased. Results obtained here can be used as a base case to understand a similar phenomenon occurring when extended to other fluid systems such as that of a natural gas influx in synthetic oil-based drilling fluids.


Author(s):  
Daiyan Ahmed ◽  
Yingjian Xiao ◽  
Jeronimo de Moura ◽  
Stephen D. Butt

Abstract Optimum production from vein-type deposits requires the Narrow Vein Mining (NVM) process where excavation is accomplished by drilling larger diameter holes. To drill into the veins to successfully extract the ore deposits, a conventional rotary drilling rig is mounted on the ground. These operations are generally conducted by drilling a pilot hole in a narrow vein followed by a hole widening operation. Initially, a pilot hole is drilled for exploration purposes, to guide the larger diameter hole and to control the trajectory, and the next step in the excavation is progressed by hole widening operation. Drilling cutting properties, such as particle size distribution, volume, and shape may expose a significant drilling problem or may provide justification for performance enhancement decisions. In this study, a laboratory hole widening drilling process performance was evaluated by drilling cutting analysis. Drill-off Tests (DOT) were conducted in the Drilling Technology Laboratory (DTL) by dint of a Small Drilling Simulator (SDS) to generate the drilling parameters and to collect the cuttings. Different drilling operations were assessed based on Rate of Penetration (ROP), Weight on Bit (WOB), Rotation per Minute (RPM), Mechanical Specific Energy (MSE) and Drilling Efficiency (DE). A conducive schedule for achieving the objectives was developed, in addition to cuttings for further interpretation. A comprehensive study for the hole widening operation was conducted by involving intensive drilling cutting analysis, drilling parameters, and drilling performance leading to recommendations for full-scale drilling operations.


Sign in / Sign up

Export Citation Format

Share Document