Characterization of Antifungal Secondary Metabolites Produced by Klebsiella pneumoniae and Screening of its Chemical Compounds Using GC-MS

Author(s):  
Abeer Fauzi Al-Rubaye ◽  
Mohanad Jawad Kadhim ◽  
Imad Hadi Hameed

Bioactives were analyzed using gas chromatography-mass spectroscopy (GC-MS) techniques, then the in vitro antibacterial and antifungal activity of the methanolic extract was evaluated. Twenty two bioactive compounds were identified in the methanolic extract of Klebsiella pneumoniae. GC-MS analysis of Klebsiella pneumoniae revealed the existence of the 6,9,12-Octadecatrienoic acid , phenylmethyl ester , (Z,Z,Z)-, 5,7-Dodecadiyn-1,12-diol, 1,4 Decadiyne, 10,12-Octadecadiynoic acid, 1-Cyclopropyl-3,4-epoxyhex-5-en-1-yne, N,N-Dimethyl-3-methoxy-4-methylphenethylamine, Ethenetricarbonitrile , 3,4-xylidino, Pentyl glycolate, 3-(1,1'-Biphenyl-4-yl)butanenitrile, 4'-Amino-6-methoxyyaurone, Ethanone , 2,2'-(octahydro-2,3-quinoxalinediylidene)bis[1-phe, 1,1'-Bicyclohexyl , 4-methoxy-4'-propyl-, [1.4]Bipiperidinyl-4'-carboxamide , 1'-(chlorobenzenesulfony, 7H-Pyrrolo[2,3-d]pyrimidin-4-amine ,Vinylsulfonamide, 1-Phenyl-2-(4-methylphenyl)diazene 1-oxide, N-Benzyl-N-ethyl-p-isopropylbenzamide, 1-phenyl-2-(4-methylphenyl)-diazene 1-oxide, 1-Benzylindole, Isophthalic acid , di(2-methoxyethyl) ester, 1-Tert , butyl -3,3-bis(trifluoromethyl)diaziridine, 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyram. Datura stramonium (Alkaloids) was very highly active (6.481±0.24) mm. The results of anti-fungal activity produced by Klebsiella pneumoniae showed that the volatile compounds were highly effective to suppress the growth of Aspergillus flavus (6.287±0.30). Klebsiella pneumoniae produce many important secondary metabolites with high biological activities. Based on the significance of employing bioactive compounds in pharmacy to produce drugs for the treatment of many diseases, the purification of compounds produced by Klebsiella pneumoniae can be useful.

Author(s):  
Sabreen A. Kamal

Bioactives were analyzed using gas chromatography-mass spectroscopy (GC-MS) techniques, then the in vitro antibacterial and antifungal activity of the methanolic extract was evaluated. GC-MS analysis of Morganella morganii revealed the existence of the Tricyclo[4.3.1.1(3.8)]undecan-1-amine, 3-Methoxybenzaldehyde semicarbazone, carboxaldehyde , 1-methyl-,oxime ,(Z)-(+), 1,5,5-Trimethyl-6-methylene-cyclohexene, 4-(2,5-Dihydro-3-methoxyphenyl)butylamine, Paromomycin , 9-Borabicyclo[3.31]nonane , 9-mercapto-, Benzenemethanol , 2-(2-aminopropoxy)-3-methyl, Acetamide , N-(6-acetylaminobenzothiazol-2-yl)-2-(adamantan, rin-6-carboxylic acid , 4-(2,5-Dihydro-3-methoxyphenyl)butylamine, N-(2,5-Dicyano-3,4-dihydro-2H-pyrrol-2-yl)-acetamide, 3,10-Dioxatricyclo [4.3.1.0(2,4)]dec-7-ene, 3-Cyclohex-3-enyl-propionic acid, Eicosanoic acid ,phenylmethyl ester, 3,7-Diazabicyclo[3.3.1]nonane , 9,9-dimethyl-, Dithiocarbamate , S-methyl-,N-(2-methyl-3-oxobutyl)-, dl-Homocysteine, 2-(2-Furyl)pyridine, 1,7-Dioxa-10-thia-4,13-diazacyclopentadeca-5,9,12-trione, 5,7-Dodecadiyn-1,12-diol, 1-(β-d-Arabinofuranosyl)-4-O-difluoromethyluracil, Uric acid, Pyrrolo[1.2-a]pyrazine-1,4-dione , hexahydro-,12-Methyl-oxa-cyclododecan-2-one, Phthalic acid , butyl undecyl ester, 9,12,15-Octadecatrienoic acid , 2,3-bis(acetyloxy)propyl ester, 1,2,4-Trioxolane-2-octanoic acid 5-octyl-, methyl ester, 12-Dimethylamino-10-oxododecanoic acid , Octahydrochromen-2-one, L-Aspartic acid , N-glycyl-,2H-Oxecin-2-one , 3,4,7,8,91,10-hexahydro-4-hydroxy-10-meth , Thiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione , 2-amino-4-(2-ph, Dec-9-en-6-oxo-1-ylamide, 3,6,12-Trimethyl-1,4,7,10,13,16-hexaaza-cyclooctadecane, 2-lodohiistidine, 2,5-Piperazinedione ,3,6-bis(2-methylpropyl)-, 9-Octadecenamide , (Z)-, 3',8,8'-Trimethoxy-3-piperidyl-2,2'-binaphthalene-1,1',4,4'-tetra. Citrullus colocynthis (Crude) was very highly active (6.39±0.27) mm. The results of anti-fungal activity produced by Morganella morganii showed that the volatile compounds were highly effective to suppress the growth of Aspergillus terreus (5.613±0.23). Morganella morganii produce many important secondary metabolites with high biological activities. Based on the significance of employing bioactive compounds in pharmacy to produce drugs for the treatment of many diseases, the purification of compounds produced by Morganella morganii can be useful.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 474
Author(s):  
Ángela P. Hernández ◽  
Pablo Chamorro ◽  
Mª Lucena Rodríguez ◽  
José M. Miguel del Corral ◽  
Pablo A. García ◽  
...  

Terpenylquinones are mixed biogenesis primary or secondary metabolites widespread in Nature with many biological activities, including the antineoplastic cytotoxicity, that have inspired this work. Here, we present a cytotoxic structure-activity relationship of several diterpenylhydroquinone (DTHQ) derivatives, obtained from the natural labdane diterpenoid myrceocommunic acid used as starting material. Different structural modifications, that changed the functionality and stereochemistry of the decalin, have been implemented on the bicyclic core through epoxidation, ozonolysis or decarboxylation, and through induction of biomimetic breaks and rearrangements of the diterpene skeleton. All the isomers generated were completely characterized by spectroscopic procedures. The resulting compounds have been tested in vitro on cultured cancer cells, showing their relevant antineoplastic cytotoxicity, with GI50 values in the μM and sub-μM range. The rearranged compound 8 showed the best cytotoxic results, with GI50 at the submicromolar range, retaining the cytotoxicity level of the parent compounds. In this report, the versatility of the labdane skeleton for chemical transformation and the interest to continue using structural modifications to obtain new bioactive compounds are demonstrated.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.


2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


Author(s):  
Grazielle Oliveira ◽  
Caroline Marques ◽  
Anielle de Oliveira ◽  
Amanda de Almeida dos Santos ◽  
Wanderlei do Amaral ◽  
...  

Author(s):  
Tuğba Demir ◽  
Özlem Akpınar

Bioactive compounds, called phytochemicals, are produced as secondary metabolites in plants that have beneficial effects on health when they are consumed as nutrients. Phytochemicals have an effective role in the formation of the color, smell and taste of the plants. As an alternative to the synthetic materials used in the treatment of many chronic diseases, the interest in the use of plants phytochemicals have been increased. This trend has led to the development of a new market. This review includes biological activities of plant phytochemicals including antioxidant, antimicrobial, antifungal, antidiabetic, antiinflammatory, anticancer and antihypertensive properties.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 460 ◽  
Author(s):  
Rusu ◽  
Fizeșan ◽  
Pop ◽  
Gheldiu ◽  
Mocan ◽  
...  

Tree nut by-products could contain a wide range of phytochemicals, natural antioxidants, which might be used as a natural source for dietary supplements. The aim of the present study was to evaluate the phenolic and sterolic composition, as well as the antioxidant and other biological activities, of hazelnut involucre (HI) extracts. Experimental designs were developed in order to select the optimum extraction conditions (solvent, temperature, time) using turbo-extraction by Ultra-Turrax for obtaining extracts rich in bioactive compounds. Qualitative and quantitative analyses were performed by LC-MS and LC-MS/MS and they revealed important amounts of individual polyphenols and phytosterols, molecules with antioxidant potential. The richest polyphenolic HI extract with the highest antioxidant activity by TEAC assay was further evaluated by other in vitro antioxidant tests (DPPH, FRAP) and enzyme inhibitory assays. Additionally, the cytotoxic and antioxidant effects of this extract on two cancerous cell lines and on normal cells were tested. This is the first study to analyze the composition of both hydrophilic and lipophilic bioactive compounds in HI extracts. Our findings reveal that this plant by-product presents strong biological activities, justifying further research, and it could be considered an inexpensive source of natural antioxidants for food, pharmaceutical, or cosmetic industry.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Rabie Kachkoul ◽  
Tarik Squalli Houssaini ◽  
Mohamed Mohim ◽  
Radouane El Habbani ◽  
Anissa Lahrichi

The plant Punica granatum L. has several biological activities and a great curative and preventive power against chronic diseases. For this purpose, the objective of this work is to valorize the fruit peel of this plant in the field of phytomedicine, by quantifying and identifying its bioactive compounds and by evaluating their antioxidant and anticrystallization activities against calcium oxalate. This comparative study has been carried out by hydroalcoholic extract (E.PG) and infusion (I.PG) of the plant. The quantification of the phenolic compounds has been performed by spectrophotometric methods, and the chemical species identification has been performed by UPLC-PDA-ESI-MS. Moreover, the examination of the antioxidant activity has been executed by both methods of DPPH and FRAP. The crystallization inhibition has been studied in vitro by the turbidimetric model. The characterization of the synthesized crystals has been accomplished by microscopic observation and by Fourier Transform Infrared Spectroscopy. The results found show the comparable importance of the two plant extracts in the elimination of free radicals; the values of the half maximal inhibitory concentration “IC50” obtained are in the order of 60.87 ± 0.27 and 59.91 ± 0.83 μg/mL by the DPPH method and in the order of 42.17 ± 7.46 and 79.77 ± 6.91 μg/mL by the FRAP method, for both E.PG and I.PG, respectively. Furthermore, the inhibition percentages of calcium oxalate crystallization are in the range of 98.11 ± 0.17 and 98.22 ± 0.71% against the nucleation and in the order of 88.98 ± 0.98 and 88.78 ± 2.48% against the aggregation, for E.PG and I.PG, respectively. These results prove the richness of the plant in bioactive compounds, offering an antioxidant and anticrystallization capacity; therefore, it can be used in the treatment and/or the prevention of stone formation.


2012 ◽  
Vol 77 (5) ◽  
pp. 627-637 ◽  
Author(s):  
Pal Singh ◽  
Nanda Srivastava

Mononuclear metal complexes of the type [ML1]Cl2 (where, M = = Cu(II), Co(II) or Ni(II) and L1 = ligand) were synthesized by the reaction of a new N4 coordinating ligand, derived from diacetylbisethylenediamine with benzoic acid, and the corresponding hydrated metal chloride salts. The metal complexes were characterized by elemental analysis, melting point determination, molar conductance and magnetic moment measurements, IR, UV-Vis, 1H- and 13C-NMR, and ESR spectroscopy. The ligand and all the metal complexes were stable in the solid state at room temperature. From the analytical and spectroscopic investigations, the stoichiometry of the complexes was found to be 1:1 (metal:ligand). Based on the electronic spectra and magnetic moment data, the metal complexes had a square planar geometry. The molar conductance values show the 1:2 electrolytic nature of the metal complexes. A cyclic voltammetric study of the Cu(II) metal complex has also performed, which showed one electron quasi-reversible reduction around -0.92 to -1.10 V. In vitro biological activities of the ligand and metal complexes was checked against two bacteria Bacillus subtilis and Escherichia coli and two fungi Aspirgillus niger and A. flavus which showed the antibacterial and antifungal properties of the ligand and its metal complexes.


Sign in / Sign up

Export Citation Format

Share Document