Optimization of medium components to improve the antimicrobial activity of a new Saharan actinobacterial strain Saccharothrix tamanrassetensis DSM 45947

2021 ◽  
Vol 16 (7) ◽  
pp. 35-47
Author(s):  
Keramane Leila Bakour ◽  
Hadjira Boudjella ◽  
Nouredinne Bouras ◽  
Florence Mathieu

Saccharothrix tamanrassetensis DSM 45947 previously isolated from a Saharan soil sample and characterized as a new species, was found to be a potential candidate in the search for novel antibiotics. The strain was found to exhibit a strong antimicrobial activity against a wide range of bacteria and fungi. In this study, statistical methods were applied to optimize the fermentation medium for enhanced antimicrobial activity production. A basal medium supplemented with sucrose and corn steep liquor was used as the original medium for optimization experiments. Plackett-Burman design showed that sucrose, corn steep liquor and KH2PO4, were recognised to have significant effect on antimicrobial activity production. Response surface methodology with Box-Behnken design determined the optimal concentrations. Optimal values for maximum antibiotic production were as follows: 7 g L-1 of sucrose, 52 g L-1 of corn steep liquor and 0.9 g L-1 of KH2PO4. Under these conditions, antimicrobial activities of DSM 45947 showed a global increase by 32% against the bacterium methicillinresistant Staphylococcus aureus and 36% against the fungus Umbelopsis ramanniana. This study provided an economical and efficient method to cultivate Saccharothrix tamanrassetensis DSM 45947 for enhanced antimicrobial activity production.

Author(s):  
Malika Benkahoul ◽  
Amina Bramki ◽  
Aicha Belmessikh ◽  
Aicha Mechakra-Maza

The production of an acid protease by liquid fermentation is performed on a medium based on decommissioned dates by a local mold isolated from an extreme environment. The used mold is isolated from the thermal soil in Hammam Safsaf of Teleghma (Algeria). Phenotypic and molecular identification has shown that it is Aspergillus niger. This fungi strain exhibited exo-protease activity on milk agar. The fermentation medium based on decommissioned dates is enriched by other factors according to a statistical method; the plan of Plackett and Burman. This method (N = 8 experiments and N-1 factors) allowed the optimization of the enzyme production and the growth of the mold. The statistical analysis of the obtained results shows an increased enzyme activity (650.20U), in the presence of yeast extract and salts with probabilities p = 0.239 for the first and p = 0.190 for the second. Furthermore, the corn-steep-liquor (p = 0.229) and yeast extract (p = 0.053) present a significant effect on mold growth. In conclusion, the culture of A. niger on optimized medium gives good yields of biomass and proteolytic activity compared to the basal medium. These results are encouraging. In fact, the use of a cheap and available substrate such as decommissioned dates saves the cost price of fermentation on an industrial scale.


2018 ◽  
Vol 2 (4) ◽  
pp. 63 ◽  
Author(s):  
Patrícia de Souza ◽  
Nadielly Andrade Silva ◽  
Daniele Souza ◽  
Thayse Lima e Silva ◽  
Marta Freitas-Silva ◽  
...  

This study aimed to evaluate the production of a surfactant by Cunninghamella echinulata, using agro-industrial residues, corn steep liquor (CSL), and soybean oil waste (SOW). The study had a factorial design, using as a variable response to the reduction of surface tension. C. echinulata was able to produce biosurfactant in assay, CSL (8.82%) and SOW (2%). The results showed that the biosurfactant was successfully produced by C. echinulata and had attractive properties, such as a low surface tension (31.7 mN/m), a yield of 5.18 g/L at 120 h of cultivation, and an anionic profile. It also achieved a reduction in surface tension stability in a wide range of pH values, temperatures, and salinity values. The biosurfactant produced by C. echinulata showed an absence of toxicity to Artemia salina. The influence of the biosurfactant on the viscosity of engine oil, burnt engine oil, diesel, soybean oil post-frying, canola oil, and water was investigated. The results reveal a mechanism for the decrease of the viscosity using hydrophobic substrates and the new biosurfactant solution at 1.5% of the (CMC). This enables the formulation of a low-cost culture medium alternative, based on corn steep liquor and the reuse of soybean oil after frying to produce a biosurfactant. Additionally, performance of the biosurfactant isolated from C. echinulata showed an excellent ability to remove spilled oil, such as diesel (98.7%) and kerosene (92.3%) from marine sand.


2020 ◽  
Vol 12 (1) ◽  
pp. 101-109
Author(s):  
H. Algarni ◽  
Ibrahim Alshahrani ◽  
Essam H. Ibrahim ◽  
Refaat A. Eid ◽  
Mona Kilany ◽  
...  

A novel 40P2O5–20Na2O–10Ca(OH)2–20CaCl2–6.0ZnO–2.0BaF2–2.0TiO2 (BGBaFTi) bioglasses is prepared. The reaction of the glasses in SBF solution is characterized by XRD and SEM indicated that the carbonate hydroxyapatite has formed rapidly on the glasses. BGBaFTi bioglasses was tested for its antimicrobial activity, anti-proliferative/cytotoxicity against normal and activated splenic cells in vitro and in vivo. This results showed that BGBaFTi has antimicrobial activities against Gram negative and positive bacteria as well as fungi. We found that the antimicrobial activity of nanoparticles of BGBaFTI is high than the normal powder of it. Moreover BGBaFTi (powder and nanoparticle) with cytotoxic effect on normal splenic cells was investigated. The products of activated splenic cells did not cause any changes in the structure of BGBaFTi. It did not cause any acute cytotoxicity or lysis to RBCs which was not affected by lytic products of immune cells. The bioactivity and biocompatibility of the present glasses use it a good potential candidate in the field of tissue engineering.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amy B. Howell ◽  
Doris H. D'Souza

Pomegranates have been known for hundreds of years for their multiple health benefits, including antimicrobial activity. The recent surge in multidrug-resistant bacteria and the possibility of widespread global virus pandemics necessitate the need for additional preventative and therapeutic options to conventional drugs. Research indicates that pomegranates and their extracts may serve as natural alternatives due to their potency against a wide range of bacterial and viral pathogens. Nearly every part of the pomegranate plant has been tested for antimicrobial activities, including the fruit juice, peel, arils, flowers, and bark. Many studies have utilized pomegranate peel with success. There are various phytochemical compounds in pomegranate that have demonstrated antimicrobial activity, but most of the studies have found that ellagic acid and larger hydrolyzable tannins, such as punicalagin, have the highest activities. In some cases the combination of the pomegranate constituents offers the most benefit. The positive clinical results on pomegranate and suppression of oral bacteria are intriguing and worthy of further study. Much of the evidence for pomegranates’ antibacterial and antiviral activities against foodborne pathogens and other infectious disease organisms comes fromin vitrocell-based assays, necessitating further confirmation ofin vivoefficacy through human clinical trials.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-7
Author(s):  
Bibek Adhikari ◽  
Pradeep Kumar Shah ◽  
Roman Karki

A wide range of medicinal plant extracts has phytochemicals that possess antimicrobial properties and these plants are used to treat several infections. The study aimed to assess the antimicrobial activities of some spices extracts and to evaluate the phytochemicals present in them. The extracts of spices were prepared using Soxhlet apparatus refluxing with methanol and ethanol. The well diffusion technique was implemented for the evaluation of antimicrobial activities of the extracts and the zone of inhibitions was recorded in millimeters. The antimicrobial test was done against five bacterial isolates: Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enterica serotype Typhi, and Staphylococcus aureus and a fungal isolate: Candida albicans. The extracts were concentrated by Rotary Vacuum Evaporator and a stock solution of 200 mg/mL was prepared by dissolving in 10 % DMSO. Concentrations of 40, 60, 80 and 100 mg/mL extracts were used for antimicrobial activity. The result of this study showed that clove extracts had the highest antimicrobial property against all the test microorganisms. Methanolic extract of clove had the highest inhibitory effect against Proteus mirabilis (24.21±0.15 mm), Pseudomonas aeruginosa (19.78±0.23 mm), and Candida albicans (20.07±0.08 mm) whereas ethanolic extract was effective against Escherichia coli (20.44±0.16 mm), Salmonella Typhi (21.66±0.31 mm) and Candida albicans (21.11±0.09 mm). Cinnamon and pepper extracts, leaving some exceptions, also had antimicrobial properties. The presence of phytochemicals: polyphenols, flavonoids, and tannins are the major components responsible for antimicrobial activity. Thereby, this study successfully demonstrated the possibilities of using spices extracts in the treatment of microbial infections.


2011 ◽  
Vol 145 ◽  
pp. 68-72
Author(s):  
Jian Lu Ma ◽  
Xiao Min Fang ◽  
Xin Jiong Guo ◽  
Huan Fei Liu ◽  
Gui Fu Dai ◽  
...  

To achieve high enzymatic hydrolytic efficiency of corncob residue, one strain, Trichoderma C1067, with the enzyme activity of corncob residue as high as 4.5g/L glucose liberated per hour in 0.5mL crude cellulase and 0.5mL citric acid /sodium citrate buffer under the assay conditions, was carefully studied. The optimal carbon and nitrogen sources used in the fermentation medium are as follows: corncob residues 2.0%, wheat bran 1.5%, corncob 0.5%, rice straw 0.5%, peptone 0.1% and corn steep liquor 4%. The optimal conditions of saccharification for corncob are 55°C and pH 4.0. The sugars gained in the hydrolysate consist of glucose 4.1% and xylose 0.4% after enzymolysis for 72h, tested by capillary electrophoresis.


Author(s):  
Ravindar Bairam ◽  
Srinivasa Murthy Muppavarapu ◽  
Sivan Sreekanth

Objective: Chalcones and their heterocyclic analogs represent an important class of small molecules which have a wide range of pharmacological activities. Therefore, in this study, synthesis and anticonvulsant and antimicrobial activities of some new 1, 3-thiazines have been extensively discussed.Methods: The reaction mixture of 4-tert-butylcyclohexanone on Claisen-Schmidt condensation with various aromatic aldehydes in the presence of dilute sodium hydroxide afforded the corresponding chalcones. Further, these compounds were subjected to cocondensation with thiourea, in the presence of isopropanol, catalyzed by aqueous potassium hydroxide to form 4-aryl 8-arylidene-5, 6-dihydro-2-imino-6-methyl-4H, 7H-(1, 3) benzothiazines. The structures of the newly synthesized compounds have been established on the basis of their spectral analysis. The newly synthesized compounds have been tested for their biological screening. Antimicrobial activity by cup plate agar diffusion method and antiepileptic activity by pentylenetetrazole (PTZ) induced seizures model, using diphenyl hydantain as standard, and also they are subjected to molecular properties prediction, toxicity, drug-likeness, lipophilicity and solubility parameters determination were done by using Osiris program, Molsoft, Prototox and ALOGPS 2.1 software. The binding mode of the synthesized compounds with active protein site has been predicted using docking method.Results: Most of the compounds have shown good anticonvulsant as well as antimicrobial activities, but it is less than the standard drugs. 1, 3-thiazines derivatives were more potent, and among them, compounds TB5 andTB7 were the most active compounds in these series; TB5 whichcontains isopropyl phenyl moiety, was shown moderate potent activity with onset of convulsion at 14.1 min and TB7 containing 3, 4, 5-trimethoxyphenyl substituents on the thiazine moiety was more potent as it has prolonged the onset of convulsions by 18.7 min. Whereas in the case of antimicrobial activity of the compounds, from the results we have observed that TB5 have been shown greatest antimicrobial activity in all the bacterial and fungal strains, TB2 also shown superior activity, the others have been shown good antimicrobial activity.Conclusion: According to the activity studies, it is observed that the synthesis and antimicrobial as well as anticonvulsant activities of novel 1, 3-thiazine derivatives have been shown better activity. Moreover molecular docking results give an insight into how further modification of the lead compound can be carried out for higher inhibitory activity. In particular, compounds with electron withdrawing substituents along with lipophilic methoxyl and isopropyl groups were more potent.


2020 ◽  
Vol 32 (11) ◽  
pp. 2887-2892
Author(s):  
R. IDAMALARSELVI ◽  
G. SWETHA ◽  
C. RAMACHANDRA RAJA ◽  
R. PRISCILLA

This study focused on kinetic modelling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the experimental kinetic curves for the thermal decomposition of (E)-4-Bromo-2-[(phenylimino)methyl]- phenol (4B2PMP) crystal. The crystal was grown by a slow evaporation method. The cell parameters and crystalline perfection of the grown crystal were studied by single and powder X-ray diffractions. Thermal stability and phase change of 4B2PMP crystal were analyzed by TG/DTA. The microhardness study has revealed the soft nature. UV-visible analysis reveals the wide range of optical window of the optical transmission from 199 nm to 1100 nm. The bandgap of the crystal is found to be 3.24 eV. The FESEM of the crystals was spherically shaped and consisted of a core-shell structure with internal aggregates. The antimicrobial activity of title crystal was tested against different microorganisms by disc diffusion method. The results reveal that the title compound have effective antimicrobial activities.


2006 ◽  
Vol 61 (7-8) ◽  
pp. 489-498 ◽  
Author(s):  
Lindy L. Esterhuizen ◽  
Riaan Meyer ◽  
Ian A. Dubery

Coleonema album, a member of the South African fynbos biome, was evaluated for its antimicrobial activity associated with its secondary metabolites. Ethanol- and acetone-based extracts obtained from plants from two different geographical areas were analyzed. A bioassay- guided fractionation methodology was followed for rapid and effective screening for the presence of bioactive compounds. The TLC-bioautographic method, used to screen the plant extracts for antimicrobial activity and localization of the active compounds, indicated the presence of a number of inhibitory compounds with activity against the microorganisms (E. coli, B. subtilis, E. faecalis, P. aeruginosa, S. aureus, M. smegmatis, M. tuberculosis, C. albicans, C. cucumerinum) tested. Evaluation of the inhibitory strength of each extract by the serial microdilution assay indicated that the C. album extracts inhibited effectively all the microorganisms, with the minimum inhibitory concentrations in the low mg ml-1 range. Identification and structural information of the bioactive components were obtained by a combination of preparative TLC and LC-MS. It revealed the presence of coumarin aglycones which were responsible for the observed antimicrobial activities. The results of this study indicate that C. album possesses strong antimicrobial activity against a wide range of microorganisms that warrants further investigation into the use of the extracts or their active constituents as a potential source for novel drugs.


Sign in / Sign up

Export Citation Format

Share Document