scholarly journals Aerobic fermentation prior to pasteurization produces a selective substrate for cultivation of the mushroom Pleurotus pulmonarius

2019 ◽  
pp. 165-173
Author(s):  
Régulo Carlos Llarena-Hernández ◽  
Alejandro Alonso-López ◽  
Francisco Hernández-Rosas ◽  
Catalino J. López ◽  
Joaquín Murguía González ◽  
...  

Description of the subject. Pleurotus species are cultivated on lignocellulosic substrates, in which contaminant fungi such as Trichoderma spp. are common. A selective substrate for Pleurotus provides the necessary conditions for protection against contaminants. Studies show that Paenibacillus polymyxa and other thermophilic bacteria benefit from the selectivity of Pleurotus cultivation substrate, however, little is known regarding these bacterial communities. Objectives. To evaluate the effect of substrate inoculation with Paenibacillus polymyxa on the productivity of Pleurotus pulmonarius and its protection against Trichoderma. Method. Barley straw inoculated with P. polymyxa and non-inoculated straw (control) was used following 0, 3 or 5 days of fermentation prior to heat treatment in order to produce the cultivation substrate. The microbiological content before and after the heat treatment, the mycelial colonization by P. pulmonarius and Trichoderma viride in competition and the yield of P. pulmonarius were all evaluated. Results. We observed that inoculation with P. polymyxa increased the number of cultivable bacteria and changed the composition of the community. The inoculation decreased the colonization ability of T. viride and favored the mycelial growth, although the yield of mushrooms was affected. Higher yields of P. pulmomarius were obtained in the control substrate where no contamination of Trichoderma spp. was observed. Conclusions. Addition of P. polymyxa modified the natural microbiological succession in a fermentation of barley straw for 5 days, favoring the competitiveness of P. pulmonarius against T. viride. Fermentation of barley straw for 3 days, followed by heat treatment, benefits the yield and protection of P. pulmonarius against Trichoderma viride.

Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


2015 ◽  
Vol 0 (1) ◽  
Author(s):  
Oleksandr M. Dubovyi ◽  
Oleksandr V. Chechel ◽  
Oleksandr O. Zhdanov

2014 ◽  
Vol 59 (1) ◽  
pp. 355-358
Author(s):  
M. Karaś ◽  
M. Nowak ◽  
M. Opyrchał ◽  
M. Bigaj ◽  
A. Najder

Abstract In this study, the effect of zinc interlayer on the adhesion of nickel coatings reinforced with micrometric Al2O3 particles was examined. Nickel coating was applied by electroplating on EN AW - 5754 aluminium alloy using Watts bath at a concentration of 150 g/l of nickel sulphate with the addition of 50 g/l of Al2O3. The influence of zinc intermediate coating deposited in single, double and triple layers on the adhesion of nickel coating to aluminium substrate was also studied. The adhesion was measured by the thermal shock technique in accordance with PN-EN ISO 2819. The microhardness of nickel coating before and after heat treatment was additionally tested. It was observed that the number of zinc interlayers applied does not significantly affect the adhesion of nickel which is determined by thermal shock. No defect that occurs after the test, such as delamination, blistering or peeling of the coating was registered. Microhardness of the nickel coatings depends on the heat treatment and the amount of zinc in the interlayer. For both single and double zinc interlayer, the microhardness of the nickel coating containing Al2O3 particles increased after heat treatment, but decreased when a triple zinc interlayer was applied.


Author(s):  
Marcin Szmul ◽  
Katarzyna Stan-Glowinska ◽  
Marta Janusz-Skuza ◽  
Agnieszka Bigos ◽  
Andrzej Chudzio ◽  
...  

AbstractThis work presents a detailed description of a bonding zone of explosively welded Ti/steel clads subjected to stress relief annealing, applied in order to improve the plasticity of the final product. The typical joint formed by the welding process possesses a characteristic wavy interface with melted regions observed mainly at the crest regions of waves. The interface of Ti/steel clads before and after annealing was previously investigated mostly in respect to the melted regions. Here, a sharp interface between the waves was analyzed in detail. The obtained results indicate that the microstructure of a transition zone of that area is different along the width. After the heat treatment at 600 °C for 1.5 hours, titanium carbide (TiC) together with α-Fe phase forms at the interface in local areas of relatively wide interlayer (~ 1 µm), while for most of the sharp interface, a much thinner zone up to about 400 nm, formed by four sublayers containing intermetallic phase and carbides, is present. This confirms that carbon diffusion induced by applied heat treatment significantly influences the final microstructure of the Ti/steel interface zone. Side bending tests confirmed high plasticity of welds after applied heat treatment; however, the microhardness measurements indicated that the strengthening of the steel in the vicinity of the interface had not been removed completely.


1983 ◽  
Vol 34 (3) ◽  
pp. 241 ◽  
Author(s):  
CW Ford

Stem cell walls of pangola grass (Digitaria decumbens) were ground to two particle sizes (c. 1 and 0.1 mm diameter), and incubated with cellulase (ex. Trichoderma viride) for varying times before and after delignification. Total cell walls finely ground (0.1 mm) with a Spex Shatterbox mill were initially degraded more rapidly (to 24 h) than delignified 1 mm particles. Thereafter the delignified material was solubilized to a greater extent. Subsequent specific determinations of cell wall polysaccharides indicated that delignification increased the rate of hemicellulose degradation to a greater extent than did particle size reduction, whereas the opposite was found for cellulose. The difference between delignified and Spex-ground residues, in terms of the amount of polysaccharide digested, was much greater for cellulose than hemicellulose. It is concluded that structural features play a more important role in limiting cellulase degradation of cellulose than does association with lignin, the reverse being so for hemicellulose.


2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.


2014 ◽  
Vol 809-810 ◽  
pp. 884-889
Author(s):  
Zhen Tan ◽  
Hui Ying Chen ◽  
Bi Hao Lan ◽  
Xiang Wen Tong ◽  
Xiao Mei Ba

Hydrogen zeolite was modified with CeO2 by impregnation - filtration - heat treatment. Hydrogen-zeolite samples before and after modification were characterized by XRD and SEM. The catalytic efficiency of modified hydrogen-zeolite was investigated. Such modification conditions were explored: as the CeO2 percentage, calcination temperature, calcination time, impregnation temperature. The results show that the optimal CeO2 percentage is 0.5%, calcination temperature is 600°C, calcination time is 2h, impregnation temperature is 75°C. The aspirin yield reaches 78.3% under the optimal conditions, compared with that (64.8%) catalyzed by sulfuric acid and that (70.4%) catalyzed by unmodified zeolite. XRD, SEM characterizations show that Ce ions can be doped into the zeolite framework. And the modification makes the zeolite particle size become smaller, which is reduced to 50.5nm from 56.76nm. A high efficient and eco-enviromently catalyst was got by modification.


2013 ◽  
Vol 807-809 ◽  
pp. 2110-2114
Author(s):  
Shu Quan Wan ◽  
De Jun Lan ◽  
Hong Bo Han ◽  
Cai Long Zhou

The phases of Panzhihua vanadic titanomagnetite ore were studied by using XRF and XRD. XRF results show that the original ore mainly contain the elements, Fe, Ti, Si, Ca, Al, S, Mg, P, Mn, V and etc. XRD results show that the main substances in original ore were Fe3O4 and FeTiO3, and the minor phases cannot be clearly studied by XRD. After heat treatment for 10h at 573K in atmospheric ambient, the phases of the ore have been slightly changed. And after heat treatment for 10h at 1073K in atmospheric ambient, then cooled for 48h to room temperature, the main phases of the ore have almost been changed to Fe2O3 and Fe2TiO5.


1992 ◽  
Vol 7 (6) ◽  
pp. 1396-1399 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Tadayoshi Kubozoe ◽  
Yoshikazu Nakamura

Exoelectron emission from the surface of unexcited metallic glasses Fe78B13Si9 during heat treatment has been studied under ultra high vacuum condition. In the first heating cycle, exoelectrons are emitted from the as-cast ribbon in the temperature range from approximately 423 K to 773 K (150 °C to 500 °C), although the surface of the specimen is not excited by ionizing radiation, chemical processes, or mechanical treatments prior to measurements. In the second and subsequent heating cycles, however, there is no anomalous emission observed in the same temperature range. In order to elucidate the mechanism of emission, the surface of the specimen is observed by the atomic force microscope (AFM) before and after measurements. In the AFM image, many crystallites in the amorphous matrix can be found in the surface of the heated specimen. These experimental results show that exoelectrons are emitted in the same temperature range as the early stages of crystallization on the surface of metallic glasses. We hypothesize that the two effects are correlated.


2021 ◽  
Vol 67 (6 Nov-Dec) ◽  
Author(s):  
Mauro Quiroga Agurto ◽  
Elvira Leticia Zeballos Velásquez ◽  
Felipe Americo Reyes Navarro

Structural factors in clays influence their physical properties. Therefore, it is particularly important to understand the effects of heat treatment on the structure of the material during the ceramic process. In this work, we have analyzed clays from quarries in the Cerro de Pasco region, Peru, to evaluate their characteristics and the structural changes produced by heating, particularly in the interlaminar region. The samples were thermally treated between 150 oC and 800 oC with intervals of 50 oC. To evaluate the structural changes produced by temperature, X-ray diffraction were carried out before and after each heat treatment. The qualitative analysis of the measurements allowed to identify the mineralogical composition of the samples, finding phases of calcium montmorillonite, kaolinite, illite and quartz. The quantitative analysis by the Rietveld method found structural changes, particularly in the Ca-montmorillonite expansive clay. It was also possible to determine the decrease in the weight percentage of the kaolinite until the collapse of its structure between 450 °C and 500 °C. The illite presented greater thermal stability, with slight variations in its weight percentage during heat treatment, without compromising its structure. Although the quartz phase did not show relevant structure changes, it slightly increased its weight percentage with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document