Gut microbiota

Author(s):  
А.А. Пальцын

Совершенствование методов генетического анализа и развернувшиеся на этой основе работы по международному проекту «Микробиом человека» представили большой объем знаний, существенно меняющих представления об эволюции живой природы и о механизмах развития многих болезней. Пришло осознание факта, что здоровье и болезни человека в большой степени определяются взаимодействием его собственных клеток с населяющими его тело (прежде всего кишечник) микробными (прежде всего бактериальными) клетками. Главенство в этом вопросе бактерий кишечника объясняется их подавляющей многочисленностью, позицией на первичном рубеже обмена со средой и невозможностью жизни без этого обмена. Результаты обширных теоретических и клинических исследований уже сегодня могут стать основой профилактики и терапии некоторых незаразных пандемий современности. Однако научно вполне достижимый дальнейший масштабный успех в преодолении этих пандемий тормозится внешними причинами. Кишечная микробиота связывает здоровье людей с экологией планеты, с сельским хозяйством и пищевой промышленностью. Действия же международных корпораций направляются интересами не здравоохранения, а получения максимальной выгоды в минимальные сроки. Improving methods of genetic analysis and the work developed on this basis under the «Human Microbiome» international project presented a large amount of knowledge that has significantly changed ideas about the evolution of living nature and mechanisms underlying development of many diseases. People became aware of the fact that human health and diseases are largely determined by the interaction of the body’s own cells with the microbial (primarily bacterial) cells inhabiting the body (primarily the intestine). The dominance of intestinal bacteria in this aspect is explained by their overwhelming multiplicity, position on the primary border of exchange with the environment, and the impossibility of life without this exchange. Results of extensive theoretical and clinical research already today can become a basis for prevention and treatment of some current non-infectious pandemics. However, although further, large-scale success in overcoming these pandemics is scientifically quite achievable, certain political reasons hamper it. Intestinal microbiota connects human health with the global ecology, agriculture, and the food industry while actions of governments and international corporations are driven by obtaining maximum benefits in the shortest possible time rather than interests of health care.

2020 ◽  
Vol 16 (8) ◽  
pp. 1196-1208
Author(s):  
Ramin Ghodsi ◽  
Rahmat Nosrati

Background: Oils and fats are the densest sources of food energy among food groups. Vegetable oils are constituted predominantly of triglycerides. Due to the importance of edible oils in nutrition, food industry and human health, great attention has been paid to them in recent years. Some minor bioactive constituents in oils include phospholipids, tocols, sterols, carotenoid, chlorophyll, phenols, phylokynon and terpenes. Objective: The aim of the present study was to examine beneficial effects of minor compounds in edible oils on human health. Results: Minor compounds of edible oils that we use daily can produce remarkable results in the prevention and treatment of various diseases like diabetes, inflammation, hypertension, cancer, allergy and central nervous system disorders due to their antimicrobial, anti-cancer, anti-viral, anti-oxidative, anti-inflammation, anti-mutagenic, hypolipidemic, and hypoglycemic properties, among others. Conclusion: The results of this study showed that the presence of beneficial minor compounds in oils could have significant impact on the prevention and treatment of various diseases. Therefore, the type of consumed oil can play an important role in human health.


2020 ◽  
Vol 8 (2) ◽  
pp. 197
Author(s):  
Shomeek Chowdhury ◽  
Stephen S. Fong

The impact of microorganisms on human health has long been acknowledged and studied, but recent advances in research methodologies have enabled a new systems-level perspective on the collections of microorganisms associated with humans, the human microbiome. Large-scale collaborative efforts such as the NIH Human Microbiome Project have sought to kick-start research on the human microbiome by providing foundational information on microbial composition based upon specific sites across the human body. Here, we focus on the four main anatomical sites of the human microbiome: gut, oral, skin, and vaginal, and provide information on site-specific background, experimental data, and computational modeling. Each of the site-specific microbiomes has unique organisms and phenomena associated with them; there are also high-level commonalities. By providing an overview of different human microbiome sites, we hope to provide a perspective where detailed, site-specific research is needed to understand causal phenomena that impact human health, but there is equally a need for more generalized methodology improvements that would benefit all human microbiome research.


Author(s):  
Alina Stancu ◽  
Nicolae Suvorov

Population growth and globalization are currently having many negative effects on the agri-food sector's ability to ensure safe and qualitative food. Use of medicines and chemicals in animal husbandry can considerably increases production and animals' resistance to disease and pests. Elevated levels of exposure to food contaminated with chemical residues from the use of antibiotics in animal husbandry and various growth hormones are very dangerous to human health. They contribute to genetic changes at the cellular level and decreased resistance of the body to viruses and bacteria. Frequent use of antibiotics may result in chemical residues in milk, meat, eggs and honey due to large-scale application of drugs in veterinary practice. In addition to its toxicity, antibiotic residues are carcinogenic and ingested in the long term lead to increased tolerance to medication against human diseases caused by deadly bacteria. Continuous monitoring of the production phase of the agri-food chain is absolutely necessary to identify the risks of contamination and reduce the use of illegal antibiotics in animal husbandry. This research aims to determine the main causes of food contamination with chemical residues and to create an overview of the negative effects that antibiotics have on human health.


2020 ◽  
Vol 26 (2) ◽  
pp. 155-162
Author(s):  
D. P. Tsygankova ◽  
N. V. Fedorova

Hypertension (HTN) is one of the most common diseases and a risk factor leading to disabling and fatal complications. Large-scale epidemiological studies in all countries convincingly prove the need for early prevention and treatment of this pathological condition. In conditions of rapid urbanization, it is necessary to look for individual measures for the prevention and treatment. In addition to the main risk factors for HTN, such as low physical activity and increased body weight, smoking, alcohol abuse, as well as sex and age, there is convincing evidence that the level of education, economic status, professional affiliation, living conditions are also potential predictors of HTN. The review presents an analysis of the main socio-economic risk factors for HTN and the mechanisms of their influence on blood pressure. The article discusses each factor, its impact on blood pressure and the body as a whole, as well as approaches for the identification of these factors.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1358
Author(s):  
Eric N. Ponnampalam ◽  
Andrew J. Sinclair ◽  
Benjamin W. B. Holman

The maximisation of available resources for animal production, food security and maintenance of human–animal wellbeing is important for an economically viable, resilient and sustainable future. Pasture and forage diets are common sources of short chain omega-3 (n-3) polyunsaturated fatty acids (PUFA), while grain-based and feedlot diets are common sources of short chain omega-6 (n-6) PUFA. Animals deposit n-3 and n-6 PUFA as a result of their direct consumption, as feeds or by synthesis of longer chain PUFA from short chain FA precursors in the body via desaturation and elongation processes. Research conducted over the last three decades has determined that the consumption of n-3 PUFA can improve the health and wellbeing of humans through its biological, biochemical, pathological and pharmacological effects. n-6 PUFA also play an important role in human health, but when consumed at high levels, are potentially harmful. Research shows that current consumption of n-6 PUFA by the human population is high due to their meal choices and the supplied food types. If consumption of n-3 PUFA from land- and marine-based foods improves human health, it is likely that these same food types can improve the health and wellbeing of livestock (farm animals) by likewise enhancing the levels of the n-3 PUFA in their circulatory and tissue systems. Modern agricultural systems and advanced technologies have fostered large scale animal and crop production systems. These allow for the utilisation of plant concentrate-based diets to increase the rate of animal growth, often based on economics, and these diets are believed to contribute to unfavourable FA intakes. Knowledge of the risks associated with consuming foods that have greater concentration of n-6 PUFA may lead to health-conscious consumers avoiding or minimising their intake of animal- and plant-based foods. For this reason, there is scope to produce food from plant and animal origins that contain lesser amounts of n-6 PUFA and greater amounts of n-3 PUFA, the outcome of which could improve both animal and human health, wellbeing and resilience to disease.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 372 ◽  
Author(s):  
Xu ◽  
Yin ◽  
Zhang ◽  
Lv ◽  
Yang ◽  
...  

Colorectal cancer (CRC) is the second most commonly diagnosed cancer and the third cause of cancer death in the world, while intestinal microbiota is a community of microbes living in human intestine that can potentially impact human health in many ways. Accumulating evidence suggests that intestinal microbiota, especially that from the intestinal bacteria, play a key role in the CRC development; therefore, identification of bacteria involved in CRC development can provide new targets for the CRC diagnosis, prevention, and treatment. Over the past decade, there have been considerable advances in applying 16S rDNA sequencing data to verify associated intestinal bacteria in CRC patients; however, due to variations of individual and environment factors, these results seem to be inconsistent. In this review, we scrutinized the previous 16S rDNA sequencing data of intestinal bacteria from CRC patients, and identified twelve genera that are specifically enriched in the tumor microenvironment. We have focused on their relationship with the CRC development, and shown that some bacteria could promote CRC development, acting as foes, while others could inhibit CRC development, serving as friends, for human health. Finally, we highlighted their potential applications for the CRC diagnosis, prevention, and treatment.


2019 ◽  
Author(s):  
Dominic A. Colosimo ◽  
Jeffrey A. Kohn ◽  
Peter M. Luo ◽  
Sun M. Han ◽  
Amanda J. Pickard ◽  
...  

AbstractDespite evidence linking the human microbiome to health and disease, the mechanistic details of how the microbiota affects human physiology remain largely unknown. Metabolites encoded by bacteria are expected to play an integral role in the microbiota’s effect on its human host. Assigning function to these metabolites is therefore critical to determining the molecular underpinnings of the host-microbe relationship and ultimately developing microbiota inspired therapies. Here we use large-scale functional screening of small molecules produced by individual members of a simplified human microbiota to identify bacterial metabolites that agonize G-protein coupled receptors (GPCR). This analysis revealed a complex network of metabolite host receptor interactions and guided our identification of multiple microbiota derived agonists of GPCRs associated with diverse biological functions within the nervous and immune systems, among others. Collectively, the metabolite-receptor pairs we uncovered indicate that diverse aspects of human health are potentially modulated by structurally simple metabolites arising from primary bacterial metabolism.Statement of SignificanceBacteria residing within the human body have been shown to influence human health. It is likely that physiological responses to the human microbiota are mediated by the collection of small molecules encoded within these bacteria. In this study we use direct functional screening of small molecules produced by individual members of a simplified human microbiota to identify new G protein coupled receptor-metabolite interactions that seek to explain the molecular underpinnings of the microbiota’s influence on its human host.


Author(s):  
D.Y. Bolgova ◽  
◽  
N.A. Tarasenko ◽  
Z.S. Mukhametova ◽  
◽  
...  

Nutrition is an important factor that affects human health. The use of plant proteins as various additives in food production has now been actively developed. The rich chemical composition of pea grains determines the possibility of application in the food industry. Peas are characterized by good assimilability and degree of digestion.


2020 ◽  
Vol 17 (4) ◽  
pp. 448-456 ◽  
Author(s):  
Victor B. Oti

The use of Antiretroviral drugs in treating HIV/ AIDS patients has enormously increased their life spans with serious disadvantages. The virus infection still remains a public health problem worldwide with no cure and vaccine for the viral agent until now. The use of nanoparticles (NPs) for the treatment and prevention of HIV/AIDS is an emerging technology of the 21st century. NPs are solid and colloid particles with 10 nm to <1000 nm size range; although, less than 200 nm is the recommended size for nanomedical usage. There are NPs with therapeutic capabilities such as liposomes, micelles, dendrimers and nanocapsules. The particle enters the body mainly via oral intake, direct injection and inhalation. It has been proven to have potentials of advancing the prevention and treatment of the viral agent. Certain NPs have been shown to have selftherapeutic activity for the virus in vitro. Strategies that are novel are emerging which can be used to improve nanotechnology, such as genetic treatment and immunotherapy. In this review, nanoparticles, the types and its characteristics in drug delivery were discussed. The light was furthermore shed on its implications in the prevention and treatment of HIV/AIDS.


2020 ◽  
Vol 16 (6) ◽  
pp. 891-899 ◽  
Author(s):  
Wissam Zam

Probiotics are viable microorganisms widely used for their claimed beneficial effects on the host health. A wide number of researchers proved that the intake of probiotic bacteria has numerous health benefits which created a big market of probiotic foods worldwide. The biggest challenge in the development of these products is to maintain the viability of bacterial cells during the storage of the product as well as throughout the gastrointestinal tract transit after consumption, so that the claimed health benefits can be delivered to the consumer. Different approaches have been proposed for increasing the resistance of these sensitive microorganisms, including the selection of resistant strains, incorporation of micronutrients, and most recently the use of microencapsulation techniques. Microencapsulation has resulted in enhancing the viability of these microorganisms which allows its wide use in the food industry. In this review, the most common techniques used for microencapsulation of probiotics will be presented, as well as the most usual microcapsule shell materials.


Sign in / Sign up

Export Citation Format

Share Document