scholarly journals Assessment of Carbonate Rocks, Western Desert of Iraq as Dimension Stones for Building

Author(s):  
Salih Muhammad Awadh , Linaz Anis Fadhil

The current study aimed to assess the Carbonate rocks as dimension stones for building. Carbonate rocks collected from the Mauddud Formation (Albian- Cenomanian), within the Western Desert of Iraq are studied petrographically, mineralogically and geochemically. Physical and mechanical properties of selected samples are found to assess their suitability as building stones. Field work is carried out and evaluated sampling of three sites of carbonate rocks. Petrography and mineralogy of these rocks are studied using polarized microscope and XRD technique.Three microfacies (peloidal wackstone-packstone, peloidal packstone and crystalline carbonate) are distinguished. Dolomitization, cementation and recrystallization are themain diagenetic processaffecting the physical and chemical properties of them. Dolomite is the predominant mineral in the 1M and 2M sites, whereas calcite is the most predominant mineral in the 3M site, so it is classified as limestone. Chemically samples are analyzedfor SiO2, Al2O3, CaO, MgO, Fe2O3, Na2O, K2O, TiO2, MnO and LOI. CaO and MgO are the most predominant oxides confirming the abundance of calcite and dolomiteso it is classified as a calcitic dolomite for 1M and 2M sites while classified as limestone for 3M site. The results of analysis physical and mechanical properties (bulk density, water absorption, compressive strength, modulus of rupture and abrasion resistance) are indicate that selected rocks are suitable as dimension stones for building according to American Standard for Testing Materials (ASTM) specification.

2019 ◽  
Vol 136 ◽  
pp. 03001
Author(s):  
Wang Kaidian ◽  
Han Quanhui ◽  
Lu qingzhi ◽  
Chen Zhanxiong ◽  
Li Jianhui ◽  
...  

:The rubber from rubber tree strain reyan 8-79 (hainan), zhanshi 218-6 (guangdong), yunyan 73-46 and yunyan 75-11 (yunnan) were tested to determine the physical and chemical properties, processing properties of raw rubber and physical and mechanical properties of vulcanized rubber. The results showed that raw rubber from different tree strains had different physical and chemical properties, processing properties,andthe physical and mechanical properties of vulcanized rubber were different as well. Yunyan 75-11 had the highest mooney viscosity, Reyan 8-79 had the highest protein content, Zhanshi 218-6 had the best tensile and tearing strength, Yunyan 73-46 had small elastic modulus, large loss factor and good processing properties.


2021 ◽  
Vol 11 (12) ◽  
pp. 5645
Author(s):  
Byung-Hwan Ahn ◽  
Su-Jin Lee ◽  
Chan-Gi Park

The purpose of this study was to assess the physical and mechanical properties of pavement concrete for rural roads of South Korea made with air-cooled slag aggregate, which is an industrial byproduct. This study assessed the physical and chemical properties according to the following performance requirements based on the design criteria of the Korea Ministry of Agriculture’s Agricultural Production Infrastructure Maintenance Business Plan and the Korea Expressway Corporation’s Highway Construction Specialized Specifications: slump of 80 mm or greater, air content of 4.5 ± 1.5%, compressive strength of at least 21 MPa, splitting tensile strength of at least 4.2 MPa, and a chloride penetration resistance of less than 4000 C. The slump, air content, compressive strength, splitting tensile strength, flexural strength, and chloride ion permeability of the aggregate-containing concretes were measured. The air-cooled slag aggregates provided the necessary physical and chemical properties and presented no environmental issues. Furthermore, the slump and air content of concrete made with the aggregates met the target values. The slump decreased and the air content increased with increasing amounts of air-cooled slag aggregate. Mechanical testing of the concretes containing air-cooled slag aggregate established that they met the performance requirements for rural road pavement.


2021 ◽  
Vol 57 (4) ◽  
pp. 325-332
Author(s):  
Sebastian Aradoaei ◽  
Vasile Bahrin ◽  
Mihaela Aradoaei ◽  
Mirela Alina Constantin ◽  
Lucian Alexandru Constantin ◽  
...  

The study is highlighting the possibility of modeling the properties of composite materials based on recycled polypropylene (PPR), flour feathers(FF), and compatibilizers (C). The composite materials with 10% and 20% feather flour content were mixed and processed with a two-stage extruder having four heating zones between 200-230�C, in order to obtain granules. The granules were injected in various forms to evaluate the properties. The composite materials have been evaluated for determination of melt flow index (1900C; 2.16kg), density, Charpy impact, breaking strength, elongation at break, and the dielectric behavior. The results showed that the introduction of feather flour in the polymer matrix based on PPR leads to decreased flow properties as well as physical and mechanical properties. The solution in solving these deficiencies was to use compatibility agents, that would improve these properties. The physico mechanical properties were analyzed in order to identify a composite with optimal properties for industrial application.


2021 ◽  
Vol 2 (11(75)) ◽  
pp. 68-77
Author(s):  
G. Aliyev ◽  
A. Aliyev

Strength if a multilayer polymer pipe under the action of the system if external loads is studied taking into account the change in physical and mechanical properties of the material. Mechanical effect, the dependence of joint deformability of several polymer materials on the character of change if their physical and chemical properties was established. Occurrence and dependence of physical and chemical properties of the material and also breaking stresses between the layer determining adhesive strength of layered polymer pipe was established.


Nativa ◽  
2018 ◽  
Vol 6 (5) ◽  
pp. 537
Author(s):  
Claudio Gumane Francisco Juizo ◽  
Lineia Roberta Zen ◽  
Walderson Klitzke ◽  
Morgana Cristina França ◽  
Vitor Gonçalves Cremonez ◽  
...  

Este trabalho teve o objetivo de avaliar as propriedades tecnológicas da madeira de Eucalyptus sp tratada termicamente. Foram utilizadas amostras de madeira previamente secas até 12% de umidade, as quais foram separadas em cinco tratamentos, sendo um testemunha e quatro condições de exposição sob elevadas temperaturas e tempo, utilizando um forno cerâmico. As amostras foram separadas para avaliação das propriedades químicas, físicas e mecânicas. Nos resultados obtidos, observou-se decréscimo do teor de extrativos totais e holoceluloses, enquanto o teor de lignina de Klason aumentou com a temperatura e tempo de exposição. Da mesma forma, os tratamentos térmicos causaram acréscimo da perda de massa e da efetiva repelência de água, com redução da massa específica aparente, taxa de absorção de água e higroscopicidade da madeira. Na resistência das peças verificou-se aumento do módulo de elasticidade (MOE) e diminuição do modulo de ruptura (MOR) com aplicação de tratamentos térmicos. Na compressão paralela verificou-se aumento do MOE e MOR nas peças tratadas, servindo de parâmetros para possibilidades de uso estrutural da madeira até ao estado limite último. A tensão de Dureza Janka decresceu com aplicação dos tratamentos térmicos limitando a utilização dos mesmos em projetos que requerem maior resistência na superfície.Palavras-chave: Temperatura, Propriedades químicas, Propriedades físicas, Propriedades mecânicas. TECHNOLOGICAL PROPERTIES OF THE EUCALYPTUS WOOD UNDER THE HEAT TREATMENT  ABSTRACT:This work aimed to evaluate the technological properties of the heat treated wood of Eucalyptus sp. Were used wood samples Pre-dried up to 12% of moisture, which were separated into five treatments, one control and four diferente exposure conditions under high temperatures and time using a ceramic kiln. The samples were separated for evaluation of chemical, physical and mechanical properties. In the obtained results there was a decrease in total extractive and holocelluloses contents, while the Klason lignin content increased with the temperature and exposure times. In the same way, the heat treatments caused an increase of the mass loss and the effective water repellency with reduction of the apparent specific gravity, rate of water absorption and hygroscopicity of the wood. In the resistance of the pieces, the modulus of elasticity (MOE) was increased and the modulus of rupture (MOR) was reduced under the heat treatments. In the Parallel compression was verified increasing of MOE and MOR of the heat treated samples, serving as parameters for possibilities of structural use of the wood up to the last limit condition. The Janka hardness tensile decreased with the application of heat treatments, limiting the use of the wood in projects that require higher surface resistance.Keywords: temperature, chemical properties, physical properties, mechanical properties.


2012 ◽  
Vol 576 ◽  
pp. 314-317
Author(s):  
Sinin Hamdan ◽  
M. Saiful Islam

Five types of selected tropical light hardwoods were chemically modified with benzene diazonium salt to improve their physical and mechanical properties. Benzene diazonium salt underwent a coupling reaction with wood which was confirmed through FT-IR analysis. The compressive modulus of the treated wood increased, whereas modulus of rupture was shown to decrease on treatment. The modified wood samples had higher hardness (Shore D) values compared to that of the control ones.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2021 ◽  
Vol 11 (8) ◽  
pp. 3334
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

Energy consumption, because of population development, is progressively increasing. For this reason, new sources of energy are being developed, such as that produced from the combustion of biomass. However, this type of renewable energy has one main disadvantage, the production of waste. Biomass bottom ash is a residue of this industry that currently has not much use. For this reason, this research evaluates its use as a filler in bituminous mixtures, since this sector also has a significant impact on the environment, as it requires large quantities of raw materials. With this objective, first, the physical and chemical properties of biomass bottom ashes were evaluated, verifying their characteristics for their use as filler. Subsequently, bituminous mixtures were conformed with biomass bottom ash as filler, and their physical and mechanical properties were analyzed through particle loss and Marshall tests. The results of these tests were compared with those obtained with the same type of mixture but with conventional and ophite aggregates. This study confirmed that biomass bottom ash was viable for use as a filler, creating mixtures with a higher percentage of bitumen, better mechanical behavior, and similar physical properties. In short, more sustainable material for roads was obtained with waste currently condemned to landfill.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Eduardo Sadot Herrera-Sosa ◽  
Gonzalo Martínez-Barrera ◽  
Carlos Barrera-Díaz ◽  
Epifanio Cruz-Zaragoza

In polymer reinforced concrete, the Young’s modulus of both polymers and cement matrix is responsible for the detrimental properties of the concrete, including compressive and tensile strength, as well as stiffness. A novel methodology for solving such problems is based on use of ionizing radiation, which has proven to be a good tool for improvement on physical and chemical properties of several materials including polymers, ceramics, and composites. In this work, particles of 0.85 mm and 2.80 mm obtained from waste tire were submitted at 250 kGy of gamma radiation in order to modify their physicochemical properties and then used as reinforcement in Portland cement concrete for improving mechanical properties. The results show diminution on mechanical properties in both kinds of concrete without (or with) irradiated tire particles with respect to plain concrete. Nevertheless such diminutions (from 2 to 16%) are compensated with the use of high concentration of waste tire particles (30%), which ensures that the concrete will not significantly increase the cost.


Sign in / Sign up

Export Citation Format

Share Document