scholarly journals CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications

2018 ◽  
Author(s):  
Chengxi Li ◽  
Richard Liu ◽  
Luke T. Jesikiewicz ◽  
Yang Yang ◽  
Peng Liu ◽  
...  

<p>Chiral tertiary alcohols are important building blocks for the synthesis of pharmaceutical agents and biologically active natural products. The addition of carbon nucleophiles to ketones is the most common approach to tertiary alcohol synthesis, but traditionally relies on stoichiometric organometallic reagents that are difficult to prepare, sensitive, and uneconomical. We describe a mild and efficient method for the copper-catalyzed allylation of ketones, using widely available 1,3-dienes as allylmetal surrogates. Homoallylic alcohols bearing a wide range of functional groups are obtained in high yield and with good regio-, diastereo-, and enantioselectivity. Mechanistic investigations using density functional theory (DFT) implicate the in situ formation of a rapidly equilibrating mixture of isomeric copper(I) allyl complexes, from which Curtin-Hammett kinetics determine the major isomer of product. A stereochemical model is provided to explain the high diastereo- and enantioselectivity of this process. Finally, this method was applied toward the preparation of an important drug, (R)-Procyclidine, and a key intermediate in the synthesis of several pharmaceuticals.</p> <br>

2018 ◽  
Author(s):  
Chengxi Li ◽  
Richard Liu ◽  
Luke T. Jesikiewicz ◽  
Yang Yang ◽  
Peng Liu ◽  
...  

<p>Chiral tertiary alcohols are important building blocks for the synthesis of pharmaceutical agents and biologically active natural products. The addition of carbon nucleophiles to ketones is the most common approach to tertiary alcohol synthesis, but traditionally relies on stoichiometric organometallic reagents that are difficult to prepare, sensitive, and uneconomical. We describe a mild and efficient method for the copper-catalyzed allylation of ketones, using widely available 1,3-dienes as allylmetal surrogates. Homoallylic alcohols bearing a wide range of functional groups are obtained in high yield and with good regio-, diastereo-, and enantioselectivity. Mechanistic investigations using density functional theory (DFT) implicate the in situ formation of a rapidly equilibrating mixture of isomeric copper(I) allyl complexes, from which Curtin-Hammett kinetics determine the major isomer of product. A stereochemical model is provided to explain the high diastereo- and enantioselectivity of this process. Finally, this method was applied toward the preparation of an important drug, (R)-Procyclidine, and a key intermediate in the synthesis of several pharmaceuticals.</p> <br>


2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1831-1853
Author(s):  
Jaeho Jeon ◽  
Yajie Yang ◽  
Haeju Choi ◽  
Jin-Hong Park ◽  
Byoung Hun Lee ◽  
...  

AbstractTwo-dimensional (2D) layers of transition metal carbides, nitrides, or carbonitrides, collectively referred to as MXenes, are considered as the new family of 2D materials for the development of functional building blocks for optoelectronic and photonic device applications. Their advantages are based on their unique and tunable electronic and optical properties, which depend on the modulation of transition metal elements or surface functional groups. In this paper, we have presented a comprehensive review of MXenes to suggest an insightful perspective on future nanophotonic and optoelectronic device applications based on advanced synthesis processes and theoretically predicted or experimentally verified material properties. Recently developed optoelectronic and photonic devices, such as photodetectors, solar cells, fiber lasers, and light-emitting diodes are summarized in this review. Wide-spectrum photodetection with high photoresponsivity, high-yield solar cells, and effective saturable absorption were achieved by exploiting different MXenes. Further, the great potential of MXenes as an electrode material is predicted with a controllable work function in a wide range (1.6–8 eV) and high conductivity (~104 S/cm), and their potential as active channel material by generating a tunable energy bandgap is likewise shown. MXene can provide new functional building blocks for future generation nanophotonic device applications.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhi-Tao He ◽  
John F. Hartwig

Abstract Small, strained rings have rigid, defined conformations and unique electronic properties. For these reasons, many groups seek to use these subunits to form biologically active molecules. We report a generally applicable approach to attach small rings to a wide range of aromatic compounds by palladium-catalyzed α-arylation of cyclopropyl, cyclobutyl and azetidinyl esters. The direct α-arylation of cyclopropyl esters and cyclobutyl esters is achieved in high yield by ensuring that the rate of coupling exceeds the rate of Claisen condensation. The α-arylation of azetidines is achieved without ring opening of the strained saturated heterocycle by conducting the reactions with an azetidine derivative bearing a benzyl protecting group on nitrogen. Mechanistic studies show that the α-arylation of small rings is challenging because of the weak acidity of α C-H bond (cyclopropanes), strong sensitivity of the strained esters to Claisen condensation (cyclobutatanes), or facile decomposition of the enolates (azetidinyl esters).


2020 ◽  
Vol 17 ◽  
Author(s):  
Sultanat ◽  
Anam Ansari ◽  
Mohd Qamar ◽  
Shafiullah ◽  
Sartaj Tabassum ◽  
...  

Background: Corticosteroids are important group of polycyclic compounds having a wide range of pharmacological and physiological properties. Thiopyran derivatives are important building blocks of many biologically active compounds. Objective: Keeping in mind the wide range of application of corticosteroid and thiopyran, herein we intend to develop a simple and efficient strategy to synthesize steroidal thiopyran derivatives starting with different commercially available corticosteroid and study their biological property. Materials and Methods: To achieve our aim, we employed a one-pot multicomponent synthesis of steroidal thiopyran derivatives by the reaction of corticosteriods, malononitrile and carbon disulphide in presence of triethyl amine as a catalyst. Results and Discussion : An array of novel thiopyran compounds were obtained with the highest product yield using Et3N. Scanning electron microscopy analysis manifested agglomeration pertaining to brick - shaped crystals of corticosteroid thiopyran. Synthesized compound were also found to be active as antibacterial agents. Conclusion: We describe a facile one-pot multicomponent synthesis of corticosteroid thiopyran derivatives which are found to possess antibacterial activity. Excellent yields of the products, simple work-up, easily available starting materials and non-chromatographic purification are some main advantages of this protocol.


2019 ◽  
Vol 5 (12) ◽  
pp. eaay1537 ◽  
Author(s):  
Cuibo Liu ◽  
Zhongxin Chen ◽  
Huan Yan ◽  
Shibo Xi ◽  
Kah Meng Yam ◽  
...  

Unprotected E-hydrazone esters are prized building blocks for the preparation of 1H-indazoles and countless other N-containing biologically active molecules. Despite previous advances, efficient and stereoselective synthesis of these compounds remains nontrivial. Here, we show that Pt single atoms anchored on defect-rich CeO2 nanorods (Pt1/CeO2), in conjunction with the alcoholysis of ammonia borane, promotes exceptionally E-selective hydrogenation of α-diazoesters to afford a wide assortment of N-H hydrazone esters with an overall turnover frequency of up to 566 hours−1 upon reaction completion. The α-diazoester substrates could be generated in situ from readily available carboxylic esters in one-pot hydrogenation reaction. Utility is demonstrated through concise, scalable synthesis of 1H-indazole–derived pharmaceuticals and their 15N-labeled analogs. The present protocol highlights a key mechanistic nuance wherein simultaneous coordination of a Pt site with the diazo N═N and ester carbonyl motifs plays a central role in controlling stereoselectivity, which is supported by density functional theory calculations.


2021 ◽  
Author(s):  
Diana Wang ◽  
Karina Targos ◽  
Zachary Wickens

Allylic amines are valuable synthetic targets en route to diverse biologically active amine products. Current allylic C–H amination strate-gies remain limited with respect to the viable N-substituents. Herein we disclose a new electrochemical process to prepare aliphatic allylic amines by coupling two abundant starting materials: secondary amines and unactivated alkenes. This oxidative transformation proceeds via electrochemical generation of an electrophilic adduct between thianthrene and the alkene substrates. Treatment of these adducts with aliphatic amine nucleophiles and base provides allylic amine products in high yield. This synthetic strategy is also amenable to functionali-zation of feedstock gaseous alkenes at 1 atmosphere. In the case of 1-butene, remarkable Z-selective crotylation is observed. This strategy, however, is not limited to the synthesis of simple building blocks; complex biologically active molecules are suitable as both alkene and amine coupling partners. Preliminary mechanistic studies implicate vinylthianthrenium salts as key reactive intermediates.


Synthesis ◽  
2021 ◽  
Author(s):  
Ze-Yu Tian ◽  
Yu Ma ◽  
Cheng-Pan Zhang

Application of alkylsulfonium salts as alkyl transfer reagents in organic synthesis has reemerged over the past years. Numerous heteroatom- and carbon-centered nucleophiles, alkenes, arenes, alkynes, organometallic reagents, and others were readily alkylated by alkylsulfonium salts under mild conditions. The reactions feature convenience, high efficiency, readily accessible and structurally diversified alkylation reagents, good functional group tolerance, and a wide range of substrate types, allowing for facile synthesis of various useful organic molecules from the commercially available building blocks. This review summarizes the alkylation reactions using either isolated or in situ formed alkylsulfonium salts via nucleophilic substitution, transition-metal-catalyzed reactions, and photoredox processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farzaneh Shayeganfar ◽  
Rouzbeh Shahsavari

AbstractInterfacial encoded properties of polymer adlayers adsorbed on the graphene (GE) and silicon dioxide (SiO2) have been constituted a scaffold for the creation of new materials. The holistic understanding of nanoscale intermolecular interaction of 1D/2D polymer assemblies on substrate is the key to bottom-up design of molecular devices. We develop an integrated multidisciplinary approach based on electronic structure computation [density functional theory (DFT)] and big data mining [machine learning (ML)] in parallel with neural network (NN) and statistical analysis (SA) to design hybrid polymers from assembly on substrate. Here we demonstrate that interfacial pressure and structural deformation of polymer network adsorbed on GE and SiO2 offer unique directions for the fabrication of 1D/2D polymers using only a small number of simple molecular building blocks. Our findings serve as the platform for designing a wide range of typical inorganic heterostructures, involving noncovalent intermolecular interaction observed in many nanoscale electronic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akbar Basha Dhu-al-jalali-wal-ikram Shaik ◽  
Penchalaiah Palla

AbstractSingle photon quantum emitters are important building blocks of optical quantum technologies. Hexagonal boron nitride (hBN), an atomically thin wide band gap two dimensional material, hosts robust, optically active luminescent point defects, which are known to reduce phonon lifetimes, promises as a stable single-photon source at room temperature. In this Review, we present the recent advances in hBN quantum light emission, comparisons with other 2D material based quantum sources and analyze the performance of hBN quantum emitters. We also discuss state-of-the-art stable single photon emitter’s fabrication in UV, visible and near IR regions, their activation, characterization techniques, photostability towards a wide range of operating temperatures and harsh environments, Density-functional theory predictions of possible hBN defect structures for single photon emission in UV to IR regions and applications of single photon sources in quantum communication and quantum photonic circuits with associated potential obstacles.


Sign in / Sign up

Export Citation Format

Share Document