scholarly journals Novel formulation approaches for wound healing

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 937-948
Author(s):  
Tanaji D Nandgude ◽  
Syed Nateque Naser

A wound is damage to the typical anatomic structure. Wound healing is an immediate therapeutic response to injury. It is a creation of the combined response of some cell types towards injury. Wound healing takes place by a sequence of molecular events which cooperate to fix tissue integrity and cell work. In typical healthy individual under ordinary conditions, these physiological events take place smoothly. Though sometimes, these molecular events are arrested, this brings about in struggle to heal. There is an assortment of approaches for the way toward managing and controlling both acute injuries (acute wounds) and ceaseless non-mending wounds (chronic non-healing wounds). The principal objective of these two cases is to achieve better-wound healing. Ideal formulations of wound healing should not only enhance the healing process but also reduce pain, infection and loss of electrolytes, proteins and liquids from the injury. A broad scope of items typically introduced with target various parts of the wound healing process depends on numerous types of wounds and novel polymers utilised for the conveyance of medications to both acute and ceaseless injuries. These include alginate, hydrocolloids, hydrofibers, polyurethane, and hydrogels. This article gives particular importance to different novel approaches in the management of wound healing. This review draws out the data and hopes to provide understanding into traditional, current and imminent techniques and methods for wound management.

2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Sunny Wangko

Abstract: Chronic wound is still a world-wide problem that spends a very high cost related to its management and treatment. Although there are a lot of promising studies about wound healing process, the prevalence and incidence of chronic wound and its complications are still high. Conventionally, the management of chronic wound consists of surgical debridement, manual irrigation, dressing, and antimicrobial therapy (topical and/or systemic). It is accepted that microbial biofilm and its complexity play important roles in non-healing wounds. This biofilm consists of polymicrobial colonies embedded in exopolymeric matrix produced by the biofilm itself and has a high tolerance to host defence mechanisme, antibiotics, and antiseptics. Larval therapy has been approved by FDA to be used in chronic wound management. It has antimicrobial effects besides its other effects on wound healing inter alia mechanical debridement, anti-inflammation, angiogenesis, and destabilization of biofilm enzymes. Further studies are needed to explore the effects of larval therapy, especially its excretion/secretion components, so that it can be applicated more aesthetically.Keywords: chronic wound, wound healing process, biofilm, larval therapyAbstrak: Luka kronis merupakan masalah kesehatan di seluruh dunia yang telah memboroskan biaya cukup tinggi. Walaupun telah terjadi kemajuan dan pemahaman mengenai penyembuhan luka, prevalensi dan insidensi luka kronis dan komplikasinya tetap meningkat pesat. Secara konvensional, perawatan luka kronis terdiri dari debrideman, irigasi manual, dressing untuk mempertahankan kelembaban, dan terapi antimikroba (topikal dan atau sistemik). Adanya biofilm mikroba serta kompleksitasnya pada luka kronis telah disepakati sebagai salah satu kunci gagalnya penyembuhan luka. Biofilm mikroba terdiri dari koloni-koloni mikroorganisme polimikrobial terkemas dalam matriks eksopolimerik yang diproduksi olehnya sendiri dan memiliki toleransi tinggi terhadap pertahanan pejamu (host), antibiotik, dan antiseptik. Terapi larva telah diterima oleh FDA dan telah terbukti berefek antimikroba disamping efek lainnya terhadap penyembuhan luka, antara lain: debrideman mekanis, anti-inflamasi, angiogenesis, dan destabilisasi enzim biofilm pada luka. Studi lanjut diperlukan untuk mengeksplorasi efek terapi larva terutama komponen ekskresi/skresi larva terhadap penyembuhan luka agar dapat diaplikasikan secara lebih estetik.Kata kunci: luka kronis, penyembuhan luka, biofilm, terapi larva


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 961
Author(s):  
Sibusiso Alven ◽  
Vuyolwethu Khwaza ◽  
Opeoluwa O. Oyedeji ◽  
Blessing A. Aderibigbe

The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.


2018 ◽  
Vol 315 (1) ◽  
pp. H71-H79 ◽  
Author(s):  
Alan J. Mouton ◽  
Osvaldo J. Rivera ◽  
Merry L. Lindsey

After myocardial infarction, remodeling of the left ventricle involves a wound-healing orchestra involving a variety of cell types. In order for wound healing to be optimal, appropriate communication must occur; these cells all need to come in at the right time, be activated at the right time in the right amount, and know when to exit at the right time. When this occurs, a new homeostasis is obtained within the infarct, such that infarct scar size and quality are sufficient to maintain left ventricular size and shape. The ideal scenario does not always occur in reality. Often, miscommunication can occur between infarct and remote spaces, across the temporal wound-healing spectrum, and across organs. When miscommunication occurs, adverse remodeling can progress to heart failure. This review discusses current knowledge gaps and recent development of the roles of inflammation and the extracellular matrix in myocardial infarction remodeling. In particular, the macrophage is one cell type that provides direct and indirect regulation of both the inflammatory and scar-forming responses. We summarize current research efforts focused on identifying biomarker indicators that reflect the status of each component of the wound-healing process to better predict outcomes.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4368
Author(s):  
Zintle Mbese ◽  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2176 ◽  
Author(s):  
Mara Madalina Mihai ◽  
Monica Beatrice Dima ◽  
Bogdan Dima ◽  
Alina Maria Holban

Wound healing has been intensely studied in order to develop an “ideal” technique that achieves expeditious recovery and reduces scarring to the minimum, thus ensuring function preservation. The classic approach to wound management is represented by topical treatments, such as antibacterial or colloidal agents, in order to prevent infection and promote a proper wound-healing process. Nanotechnology studies submicroscopic particles (maximum diameter of 100 nm), as well as correlated phenomena. Metal nanoparticles (e.g., silver, gold, zinc) are increasingly being used in dermatology, due to their beneficial effect on accelerating wound healing, as well as treating and preventing bacterial infections. Other benefits include: ease of use, less frequent dressing changes and a constantly moist wound environment. This review highlights recent findings regarding nanoparticle application in wound management.


2018 ◽  
Vol 19 (12) ◽  
pp. 3862 ◽  
Author(s):  
Junhe Shi ◽  
May Barakat ◽  
Dandan Chen ◽  
Lin Chen

Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.


2018 ◽  
Vol 19 (10) ◽  
pp. 3217 ◽  
Author(s):  
Anisyah Ridiandries ◽  
Joanne Tan ◽  
Christina Bursill

Wound healing is a multistep process with four overlapping but distinct stages: hemostasis, inflammation, proliferation, and remodeling. An alteration at any stage may lead to the development of chronic non-healing wounds or excessive scar formation. Impaired wound healing presents a significant health and economic burden to millions of individuals worldwide, with diabetes mellitus and aging being major risk factors. Ongoing understanding of the mechanisms that underly wound healing is required for the development of new and improved therapies that increase repair. Chemokines are key regulators of the wound healing process. They are involved in the promotion and inhibition of angiogenesis and the recruitment of inflammatory cells, which release growth factors and cytokines to facilitate the wound healing process. Preclinical research studies in mice show that the administration of CCL2, CCL21, CXCL12, and a CXCR4 antagonist as well as broad-spectrum inhibition of the CC-chemokine class improve the wound healing process. The focus of this review is to highlight the contributions of chemokines during each stage of wound healing and to discuss the related molecular pathologies in complex and chronic non-healing wounds. We explore the therapeutic potential of targeting chemokines as a novel approach to overcome the debilitating effects of impaired wound healing.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2540 ◽  
Author(s):  
Federica Paladini ◽  
Mauro Pollini

Recent data have reported that the burden of infections related to antibiotic-resistant bacteria in the European Union and European Economic Area (EEA) can be estimated as the cumulative burden of tuberculosis, influenza, and human immunodeficiency virus (HIV). In wound management, the control of infections represents a crucial issue and a multi-billion dollar industry worldwide. For diabetic wounds ulcers, in particular, infections are related to the majority of amputations in diabetic patients, which today represent an increasing number of the elderly. The greatest barrier to healing is represented by the biofilm, an organized consortium of bacteria encapsulated in a self-produced extracellular polymeric substance with high resistance to conventional antimicrobial therapies. There is an urgent need for novel anti-biofilm strategies and novel antimicrobial agents and, in this scenario, silver nanotechnology has received tremendous attention in recent years in therapeutically enhanced healthcare. Due to its intrinsic therapeutic properties and the broad-spectrum antimicrobial efficacy, silver nanoparticles have opened new horizons towards novel approaches in the control of infections in wound healing. This review aims at providing the reader with an overview of the most recent progress in silver nanotechnology, with a special focus on the role of silver in the wound healing process.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Pawel Olczyk ◽  
Katarzyna Komosinska-Vassev ◽  
Grzegorz Wisowski ◽  
Lukasz Mencner ◽  
Jerzy Stojko ◽  
...  

The aim of the study was to assess the propolis effect on fibronectin metabolism in the course of burn wounds healing process. A model of burn wound healing of pig skin was applied. The amount of the released glycoprotein was assessed by a surface plasmon resonance. The profile of extracted fibronectin components was also assessed by an electrophoresis in polyacrylamide gel, with a subsequent immunodetection by Western Blotting. Propolis burn treatment decreased the release of fibronectin components from healing wounds in relation to damages treated with silver sulfadiazine. The main reason of decreased extraction of fibronectin components from wounds treated with propolis was a substantial decrease of degradation product release of the mentioned glycoprotein, which was observed particularly from the 3rd to 5th day of the repair. Wounds treatment with propolis demonstrated, especially in relation to damages treated with silver sulfadiazine, the decreased release of synthesized fibronectin molecules. The obtained results suggest that propolis modifies fibronectin metabolism in the course of wound healing process. The influence of propolis is reflected in prevention of fibronectin biosynthesis as well as its degradation in the wound area. The above-mentioned metabolic changes may decrease the risk of complications in the repair wounds process.


Nanoscale ◽  
2021 ◽  
Author(s):  
Kuo Li ◽  
Dan Li ◽  
Cheng-Hsuan Li ◽  
pengfei Zhuang ◽  
Chunmei Dai ◽  
...  

The wound healing process involves multiple steps including hemostasis, inflammation, proliferation, and tissue remodeling. Nanomaterials have been employed externally for healing wounds. However, their use as systemic therapeutics has not...


Sign in / Sign up

Export Citation Format

Share Document