scholarly journals Bicellular Tight Junctions and Wound Healing

2018 ◽  
Vol 19 (12) ◽  
pp. 3862 ◽  
Author(s):  
Junhe Shi ◽  
May Barakat ◽  
Dandan Chen ◽  
Lin Chen

Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Suman Kanji ◽  
Hiranmoy Das

Cutaneous wound healing is a complex multiple phase process, which overlaps each other, where several growth factors, cytokines, chemokines, and various cells interact in a well-orchestrated manner. However, an imbalance in any of these phases and factors may lead to disruption in harmony of normal wound healing process, resulting in transformation towards chronic nonhealing wounds and abnormal scar formation. Although various therapeutic interventions are available to treat chronic wounds, current wound-care has met with limited success. Progenitor stem cells possess potential therapeutic ability to overcome limitations of the present treatments as it offers accelerated wound repair with tissue regeneration. A substantial number of stem cell therapies for cutaneous wounds are currently under development as a result of encouraging preliminary findings in both preclinical and clinical studies. However, the mechanisms by which these stem cells contribute to the healing process have yet to be elucidated. In this review, we emphasize on the major treatment modalities currently available for the treatment of the wound, role of various interstitial stem cells and exogenous adult stem cells in cutaneous wound healing, and possible mechanisms involved in the healing process.


2019 ◽  
Vol 26 (31) ◽  
pp. 5825-5848 ◽  
Author(s):  
Nicoletta Polera ◽  
Mariateresa Badolato ◽  
Filomena Perri ◽  
Gabriele Carullo ◽  
Francesca Aiello

Giving a glance to the report of Wound Care Market by Product updated in 2017, we can see that wound care market is expected to reach USD 22.01 billion by 2022 from USD 18.35 billion at a CAGR of 3.7%. Numerous factors are driving the growth of this market, including the increasing prevalence of chronic wounds and acute wounds, increasing aged population, rising R&D activities and advancement in the field of wound care research. Advanced wound management products are accounted for the largest market share in 2017. These evidences mean that the wound care research represents a Clinical Emergency other than an interesting Marketing tool. Drug therapies so far fight efficaciously with the opportunistic pathologies derived from chronic wounds, although an unsolved challenge is still finding a useful remedy to correct the impaired wound healing process and overcome the chronic wound state, to avoid bacterial rising and severe pain. Traditional medicinal plants have been widely used in the management of wounds and different plant extracts have been evaluated for their wound healing properties through both in vitro and in vivo studies. Their phytochemical components in particular quercetin, contribute to their remedial properties in wound repair. Quercetin has important biological activities related to the improvement of the wound healing process. The present review discusses and focuses on the latest findings of the wound healing properties of quercetin, alone or as a part of plant extract, and its role as a new frontier in wound repair.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Samir Malhotra ◽  
Michael S. Hu ◽  
Clement D. Marshall ◽  
Tripp Leavitt ◽  
Alexander T. M. Cheung ◽  
...  

Chronic wounds are a source of substantial morbidity for patients and are a major financial burden for the healthcare system. There are no current therapies that reliably improve nonhealing wounds or reverse pathological scarring. Mesenchymal stromal cells (MSCs) are a promising source of novel cell-based therapies due to the ease of their harvest and their integral role in the native wound repair process. Recent work has addressed the problems of loss of plasticity and off-target delivery through use of modern bioengineering techniques. Here we describe the applications of MSCs harvested from different sources to the wound healing process and recent advances in delivery of MSCs to targeted sites of injury.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2424
Author(s):  
Ipek Süntar ◽  
Sümeyra Çetinkaya ◽  
Emiliano Panieri ◽  
Sarmistha Saha ◽  
Brigitta Buttari ◽  
...  

Wound healing involves a series of cellular events in damaged cells and tissues initiated with hemostasis and finally culminating with the formation of a fibrin clot. However, delay in the normal wound healing process during pathological conditions due to reactive oxygen species, inflammation and immune suppression at the wound site represents a medical challenge. So far, many therapeutic strategies have been developed to improve cellular homeostasis and chronic wounds in order to accelerate wound repair. In this context, the role of Nuclear factor erythroid 2-related factor 2 (Nrf2) during the wound healing process has been a stimulating research topic for therapeutic perspectives. Nrf2 is the main regulator of intracellular redox homeostasis. It increases cytoprotective gene expression and the antioxidant capacity of mammalian cells. It has been reported that some bioactive compounds attenuate cellular stress and thus accelerate cell proliferation, neovascularization and repair of damaged tissues by promoting Nrf2 activation. This review highlights the importance of the Nrf2 signaling pathway in wound healing strategies and the role of bioactive compounds that support wound repair through the modulation of this crucial transcription factor.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 735 ◽  
Author(s):  
Erika Maria Tottoli ◽  
Rossella Dorati ◽  
Ida Genta ◽  
Enrica Chiesa ◽  
Silvia Pisani ◽  
...  

Skin wound healing shows an extraordinary cellular function mechanism, unique in nature and involving the interaction of several cells, growth factors and cytokines. Physiological wound healing restores tissue integrity, but in many cases the process is limited to wound repair. Ongoing studies aim to obtain more effective wound therapies with the intention of reducing inpatient costs, providing long-term relief and effective scar healing. The main goal of this comprehensive review is to focus on the progress in wound medication and how it has evolved over the years. The main complications related to the healing process and the clinical management of chronic wounds are described in the review. Moreover, advanced treatment strategies for skin regeneration and experimental techniques for cellular engineering and skin tissue engineering are addressed. Emerging skin regeneration techniques involving scaffolds activated with growth factors, bioactive molecules and genetically modified cells are exploited to overcome wound healing technology limitations and to implement personalized therapy design.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 961
Author(s):  
Sibusiso Alven ◽  
Vuyolwethu Khwaza ◽  
Opeoluwa O. Oyedeji ◽  
Blessing A. Aderibigbe

The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


Author(s):  
Ahmed G. Hegazi ◽  
Faiz M. Al Guthami ◽  
Mohamed H. Basiouny ◽  
Ahmed F.M. Al Gethami

Honey has been documented as the oldest traditional medicine. It has been effective in suppressing inflammation, wound repair enhancer, and rapid autolytic debridement. The aim of this investigation was to evaluate the role of Saudi Arabia Talh honey (Acacia nilotica) dressing as a good alternative in care of diabetic foot (DFU) healing activity for twenty patients, wound total bacterial count, and serum cytokines levels (IFN-γ, IL-1, and IL-6). The results showed that Talh honey stimulates the wound healing process, broad-spectrum antibacterial activity, and reduction in the proinflammatory cytokines IFN-γ, IL-1, and IL-6 levels. It could be concluded that Talh honey bioactivities enhance wound healing by promoting tissue growth leading to wound repair, antibacterial, and reduction of inflammation.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


Sign in / Sign up

Export Citation Format

Share Document